Документ подпоненочивые риальы для промежуточной аттестации по дисциплине

Информация о владельце:

ФИО: Косенок Сергей Михайлович

Должность: ректор

Дата подписания: 21.10.2025 14 Редсимы работы и эксплуатации тепловых сетей

Уникальный программный ключ:

e3a68f3eaa1e62674b54f4998099d3d6bfdcf836

Код, направление подготовки	13.03.01 Теплоэнергетика и теплотехника
Направленность (профиль)	Теплоэнергетика и теплотехника
Форма обучения	Очная
Кафедра-разработчик	Радиоэлектроники и электроэнергетики
Выпускающая кафедра	Радиоэлектроники и электроэнергетики

Типовые задания для контрольной работы 7 семестр

Задание 1. Определить удельную (отнесенную на 1 ГДж и на 1 Гкал теплоты, выработанной на станции) экономию условного топлива при теплофикации по сравнению с раздельной схемой энергоснабжения промышленного предприятия, имеющего технологическую тепловую нагрузку.

Определить также относительную экономию топлива при теплофикации (отношение экономии топлива при теплофикации к расходу топлива при раздельной схеме энергоснабжения).

Теплофикационный вариант: - ТЭЦ с начальными параметрами пара p_o =13 Мпа и t_o =555°C , противодавление турбин $p_{\Pi}=0.7$ МПа, температура питательной воды $t_{\text{п.в}}$ = 230 °C, температура конденсата $t_{\text{к.т}}=100$ °C, внутренний относительный КПД турбин ТЭЦ $\eta_{\text{эм}}=0.82$ и электромеханический КПД $\eta_{\text{эм}}=0.97$.

Вариант с раздельной схемой энергоснабжения: КЭС с начальными параметрами пара $p_0=24$ МПа и $t_0=540\,^{\circ}$ С , параметры пара после промежуточного перегрева $p_{a.u}$ —4 МПа и $t_{п.п}=540\,^{\circ}$ С, потеря давления в промежуточном перегревателе $\Delta p_{п.п}=0,5$ МПа, давление в конденсаторе $p_{\kappa}=0,004$ МПа, температура питательной воды $t_{u.B}=260\,^{\circ}$ С, внутренний относительный КПД турбин КЭС $\eta_{oi}=0,84$, электромеханический КПД $\eta_{9M}=0,98$, КПД котельной КЭС и ТЭЦ $\eta_{Hc}=0,9$ и КПД промышленной котельной $\eta_{p.\kappa}=0,82$.

Потерей теплоты внутренних трубопроводов ТЭЦ, КЭС и котельной пренебречь. Выработку электроэнергии ТЭЦ и КЭС, а также КПД тепловых сетей в обоих вариантах считать одинаковыми. Приведенные выше КПД являются средними.

Задание 2. Определить удельные теплопотери и расчетные теплопотери через наружные ограждения здания длиной 86 м, шириной 14 м и высотой 20 м.

Коэффициент остекления (отношение поверхности окон к общей поверхности вертикальных наружных ограждений) ϕ =0,2. Коэффициенты теплопередачи стен, окон, потолка и пола: k_{CT} =1,2 0 BT/(м2°C); k_{ox} =3,23 B T/(м2°C); k_{int} = 0,90 BT/(м2°C); k_{na} =0,77 BT/(м2-°C). Коэффициенты снижения расчетной разности температур для стен, окон, потолка и пола: ψ cт= ψ ok=1; ψ пт=0,8; ψ пл=0,6. Температура внутреннего воздуха $t_{B,p}$ = 18 °C, а расчетная для отопления температура наружного воздуха $t_{H,0}$ = -25 °C.

Задание 3. Потребителю отпущена теплота Q =1 ГДж в виде сухого насыщенного пара с абсолютным давлением 0,5 МПа. Определить массу отпущенного пара, если от потребителя будет полностью возвращен конденсат с температурой τ_{κ} =100°C .

Определить также массу отпущенного пара, если от потребителя будет возвращено 50 % конденсата. При расчете принять, что температура холодной воды у источников теплоснабжения и потребителя $t_x = 10^{\circ} \mathrm{C}$.

Задание 4. Определить количество теплоты, аккумулированной в воде с температурой τ =150°C, заполняющей трубопровод с внутренним диаметром d=514 мм и длиной l= 1 км, и сравнить его с

количеством теплоты, аккумулированной в сухом насыщенном паре с температурой насыщения $\tau=150^{\circ}\mathrm{C}$, находящемся в таком же трубопроводе.

Отсчет количества аккумулированной теплоты вести от температуры холодной водопроводной воды t_x = 10° C

Перечень вопросов к экзамену в 7 семестре:

- 1. Классификация тепловых нагрузок: сезонная и круглогодичная тепловая нагрузки.
- 2. Расчетная часовая тепловая нагрузка района теплоснабжения.
- 3. Методы определения потребности промышленных потребителей, производственных и жилых зданий в паре и горячей воде.
- 4. Определение годового расхода теплоты.
- 5. Построение графика продолжительности сезонной тепловой нагрузки.
- 6. Построение интегрального графика отопительной нагрузки
- 7. Источники генерации тепла, используемые в системах теплоснабжения предприятий: назначение, структура, классификация.
- 8. Теплоэлектроцентрали промышленных предприятий: назначение, классификация.
- 9. Тип установок: конденсационные с отбором пара (Т и ПТ) и с противодавлением (Р).
- 10. Теплофикация. Теплофикационное оборудование ТЭЦ
- 11. Системы теплоснабжения: Назначение, структура, классификация систем теплоснабжения.
- 12. Способы теплоснабжения: централизованное от районных котельных, теплофикационная система, децентрализованная система.
- 13. Основные виды и схемы централизованного теплоснабжения.
- 14. Водяные системы теплоснабжения: однотрубная, двухтрубная, трехтрубная, четырехтрубная (преимущества и недостатки).
- 15. Присоединение потребителей в водяных системах теплоснабжения: зависимые схемы без смешения, с элеватором, со смесительным насосом;
- 16. Присоединение потребителей в водяных системах теплоснабжения: независимые схемы.
- 17. Назначение и типы смесительных устройств
- 18. Открытые тепловые сети. Закрытые тепловые сети: параллельная схема, двухступенчатая смешанная схема, двухступенчатая последовательная схема (преимущества и недостатки)
- 19. Паровые системы теплоснабжения: с возвратом конденсата, без возврата конденсата.
- 20. Системы горячего водоснабжения: классификация. Схемы централизованных систем горячего водоснабжения.
- 21. Определение потребного количества тепла на ГВС. Расчет баков аккумуляторов.
- 22. Задачи и методы регулирования.
- 23. Методы регулирования: центральный, групповой, местный и индивидуальный и ступени их возможного сочетания; особенности этих методов.
- 24. Тепловые характеристики теплообменных аппаратов и установок, их основные расчетные зависимости.
- 25. Методы центрального регулирования (ЦР) однородной тепловой нагрузки: качественный, количественный и качественно-количественный.
- 26. Расчетные зависимости определения температур и расходов сетевой воды. Выбор метода центрального регулирования отпуска теплоты.
- 27. Центральное регулирование разнородной тепловой нагрузки: построение графиков температур и расходов сетевой воды на отопление, вентиляцию и горячее водоснабжение, суммарного расхода воды в тепловой сети.
- 28. Центральное регулирование по совмещенной нагрузке.
- 29. Понятие о центральном регулировании закрытых и открытых систем теплоснабжения.
- 30. Задачи и цели гидравлического расчета. Основные расчетные зависимости.

Задание 1. При расчетной температуре наружного воздуха для отопления $t_{\text{н.o.}}$ =32 С температура воды в подающем трубопроводе отопительной сети τ'_{ol} =150 С и в обратном τ'_{o2} = 70 С. Расчетная внутренняя температура отапливаемых помещений $t_{\text{в.p.}}$ =18 С.

Определить температуру воды в подающем и обратном трубопроводах тепловой сети при $t_{\rm H}$ =-7 С, если эта сеть работает по графику центрального качественного регулирования воздушных систем отопления, когда коэффициент теплопередачи нагревательных приборов (калориферов) можно считать не зависящим от температуры воды.

Задание 2. Решить пример 4.1 для случая, когда к тепловой сети подключены системы водяного отопления, у которых коэффициент теплопередачи нагревательных приборов изменяется с изменением температуры воды. На отопительных вводах установлены элеваторы, работающие с коэффициентом смешения u=2,2.

Задание 3. Построить график температур воды в подающем и обратном трубопроводах отопительной тепловой сети, а также в подающем трубопроводе водяных отопительных систем при центральном качественном регулировании ($\overline{G_0}$ =1).

Задание 4. Тепловая сеть при низких температурах наружного воздуха работает по графику качественного регулирования водяных систем отопления, приведенному на рис. 4.1 (при $t_{\text{н.o.}}$ =-25 C, τ'_{01} =150 C, τ'_{03} =95 C, τ'_{02} =70 C, $t_{\text{в.p}}$ =18 C), а при высоких температурах наружного воздуха (от tн.и и выше) переходит на работу с постоянной температурой воды в подающем трубопроводе сети τ_{01} = τ'''_{01} = 70 C. Регулирование отпуска теплоты на отопление при $t_{\text{н.и.}}$ производится изменением расхода воды.

Определить относительный расход воды, а также температуры воды τ_{02} и τ_{03} при $t_{\rm H}$ =+10 С. Изменением коэффициента смешения элеватора при изменении расходов пренебречь.

Задание **5.** Определить температуры воды в подающем и обратном трубопроводах отопительной тепловой сети и расход сетевой воды при температуре наружного воздуха th=+10 C н качественно-количественном регулировании.

Задание 6. Система отопления рассчитана на работу от тепловой сети с температурами воды в подающем трубопроводе τ'_{01} =150 C, в подающем стояке τ'_{03} =95 C и в обратном трубопроводе τ'_{02} =70 C при температуре наружного воздуха $t_{\text{н.о.}}$ =-25 C и расчетной температуре внутреннего воздуха $t_{\text{в.р}}$ =18 C.

Задание 7. Решить предыдущий пример для случая, когда температура воды в подающем трубопроводе нормальная, а расход воды составляет 80% нормального.

Задание 8. Расчетные параметры отопительной установки при $t_{\text{н.о.}}$ =-30 С и нормальной поверхности нагрева отопительных приборов следующие: $t_{\text{в.p}}$ =18 С, ${\tau'}_{01}$ =150 С, ${\tau'}_{03}$ =95 С и ${\tau'}_{02}$ =70 С.

Определить расход сетевой воды (в долях от нормального), необходимый для поддержания расчетной температуры внутреннего воздуха при $t_{\text{н.о.}}$ =-30 C, если установленная поверхность нагрева отопительных приборов в каждом помещении здания составляет 90% нормальной ($\mu = F/F_{\text{H}}$). Влиянием изменения коэффициента теплопередачи отопительных приборов при нарушении температурного режима пренебречь.

Задание 9. При расчетной температуре наружного воздуха для проектирования вентиляции $t_{\text{н.в.}}$ =-20 С температура воды в подающем трубопроводе τ''_{1} =130 С, а после калориферов τ''_{82} =70 С. Температура внутреннего воздуха помещений $t_{\text{в.p}}$ =18 С. Регулирование качественное по вентиляционной нагрузке.

Определить температуры воды в подающем и обратном трубопроводах при температурах наружного воздуха t_H =+10 C н $t_{H,o}$ =-32 C.

Определить также кратность обмена воздуха при $t_{\text{н.o}}$ =-32 С в долях от нормальной.

Перечень вопросов к экзамену в 8 семестре:

- 1. Схемы и конфигурации тепловых сетей.
- 2. Порядок гидравлического расчета. Пьезометрический график.
- 3. Основные требования к режиму давлений водяных тепловых сетей.
- 4. Понятие статического напора и его определение.
- 5. Выбор схемы присоединения абонентских установок.

- 6. Методика гидравлического расчета разветвленных тепловых сетей и построение пьезометрического графика.
- 7. Методы определения расчетных расходов воды. Определение характеристик насосов: выбор сетевых, подпиточных и подкачивающих насосов.
- 8. Резервирование магистральных тепловых сетей: условие выбора расстояния между секционирующими задвижками, понятие о блокировке магистралей.
- 9. Гидравлическая характеристика системы и ее расчетные зависимости;
- 10. Методы построения суммарной характеристики группы включенных насосов.
- 11. Понятие о гидравлическом режиме закрытых и открытых систем.
- 12. Гидравлическая устойчивость и ее количественная оценка: понятие о коэффициенте гидравлической устойчивости, нейтральных точках и способах поддержки в них постоянного давления.
- 13. Гидравлический режим сетей с насосными и дросселирующими подстанциями.
- 14. Расчет потокораспределения в кольцевых сетях.
- 15. Гидравлический удар в тепловых сетях и формула его расчета.
- 16. Устройства, применяемые для защиты системы теплоснабжения от недопустимого повышения давления при ударе.
- 17. Оборудование тепловых пунктов (подстанций): типы установок, водоводяные подогревательные установки, смесительные узлы, аккумуляторы теплоты.
- 18. Автоматизация тепловых пунктов. Учет расхода тепла и контроль параметров теплоносителя.
- 19. Трасса и профиль теплопроводов. Конструкция теплопроводов.
- 20. Основные требования к конструкциям теплопроводов; преимущества и недостатки подземных теплопроводов в проходных каналах, непроходных и бесканальных.
- 21. Основные методы защиты подземных трубопроводов от наружной коррозии и коррозии под воздействием блуждающих токов.
- 22. Основные требования к теплоизоляционным конструкциям теплопроводов.
- 23. Трубы и их соединения; опоры.
- 24. Компенсация температурных деформаций.
- 25. Методика теплового расчета элементов тепловых сетей.
- 26. Тепловые потери и коэффициент эффективности тепловой изоляции.
- 27. Выбор толщины теплоизоляционного слоя.
- 28. Характеристика объекта эксплуатации. Повышение надежности и качества теплоснабжения.
- 29. Методы обнаружения и ликвидации повреждений в системах теплоснабжения.
- 30. Испытание и организация эксплуатации тепловых сетей.