Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Косенок Сергей Михайлович

Должность: ректор Дата подписания: 21.10.2025 14:49:47 Уникальный программный ключ:

e3a68f3eaa1e62674b54f4998099d3d6bfdcf836

Высшая математика

Квалификация	бакалавр
выпускника	бакалавр, магистр, специалист
Направление	13.03.01
подготовки	шифр
	Теплоэнергетика и теплотехника
•	наименование
Направленность	Теплоэнергетика и теплотехника
(профиль)	наименование
-	
Форма обучения	Очная
	наименование
Кафедра-	Прикладная математика
разработчик	наименование
Выпускающая	Радиоэлектроники и электроэнергетики
кафедра	наименование

Типовые задания для контрольной работы за первый семестр

Контрольная работа № 1

- 1. Вычислить $\frac{4-3i}{4+3i}$.
- 2. Построить область точек z по условиям: 2 < |z| < 4 и $-\pi < \varphi < -\pi/2$.
- 3. Найти \sqrt{i} .
- 4. Построить параллелограмм на векторах $\overrightarrow{OA} = \mathbf{i} + \mathbf{j}$ и $\overrightarrow{OB} = \mathbf{k} 3\mathbf{j}$, определить его диагонали.
- 5. Вектор составляет с осями Ox и Oy углы 40° и 80° . Найти его угол с осью Oz.
- 6. Даны вектора a=i+j+2k и b=i-j+4k. Определить прав и прыа.
- 7. Упростить выражение $\mathbf{i} \times (\mathbf{j} + \mathbf{k}) \mathbf{j} \times (\mathbf{i} + \mathbf{k}) + \mathbf{k} \times (\mathbf{i} + \mathbf{j} + \mathbf{k})$.
- 8. Вычислить объем пирамиды с вершинами A(2;0;0), B(0;3;0), C(0;0;6), D(2;3;8). Найти высоту, опущенную на грань ABC.
- 9. Вычислить определитель $\begin{vmatrix} 3 & -2 \\ 4 & 6 \end{vmatrix}$.
- 10. Вычислить определитель
 $\begin{vmatrix} 2 & 3 & 4 \\ 5 & -2 & 1 \\ 1 & 2 & 3 \end{vmatrix}$
- 11. Найти ФСР, общее решение и одно частное решение системы уравнений

$$\begin{cases} 3x_1 + 4x_2 + x_3 + 2x_4 = 3\\ 6x_1 + 8x_2 + 2x_3 + 5x_4 = 7\\ 9x_1 + 12x_2 + 3x_3 + 10x_4 = 13 \end{cases}$$

12. Определить ранг матрицы

$$\begin{pmatrix}
2 & 7 & 3 & 1 \\
3 & 5 & 2 & 2 \\
9 & 4 & 1 & 7
\end{pmatrix}.$$

13. Решить матричное уравнение методом нахождения обратной матрицы

$$\begin{pmatrix} 3 & -1 & 2 \\ 4 & 3 & 3 \\ 1 & 3 & 0 \end{pmatrix} X = \begin{pmatrix} 3 & 9 & 7 \\ 1 & 11 & 7 \\ 7 & 5 & 7 \end{pmatrix}.$$

- 14. Найти проекцию точки (1,2,8) на прямую $\frac{x-1}{2} = \frac{y}{-1} = z$.
- 15. Написать уравнение плоскости, проходящей через точку (2,-1,3) и отсекающие на осях равные отрезки.

2

16. Показать, что прямая
$$\frac{x}{2} = \frac{y}{3} = \frac{z}{1}$$
 перпендикулярна к прямой $\begin{cases} x = z + 1 \\ y = 1 - x \end{cases}$.

Типовые задания для контрольной работы за второй семестр

Контрольная работа № 2

1. Исследовать ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} n^3 \text{tg}^2 \frac{1}{n^2}$$
;

6)
$$\sum_{n=1}^{\infty} \frac{n!}{3^{n+2}}$$

6)
$$\sum_{n=1}^{\infty} \frac{n!}{3^{n+2}};$$
 B) $\sum_{n=1}^{\infty} \frac{n+1}{n};$

$$\Gamma) \sum_{n=2}^{\infty} \frac{1}{n \ln n \ln (\ln n)}$$

$$\Gamma) \sum_{n=2}^{\infty} \frac{1}{n \ln n \ln (\ln n)}; \qquad \qquad \text{Д) } \sum_{n=1}^{\infty} \frac{\left(-1\right)^n n!}{2 \cdot 5 \cdot 8 \cdot \dots \cdot \left(3n-1\right)}.$$

2. Найти область сходимости рядов:

a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (2x+5)^n}{n^2}$$
; 6) $\sum_{n=1}^{\infty} \frac{(2-x)^n}{n+1}$; B) $\sum_{n=1}^{\infty} \frac{x^n}{3n}$.

6)
$$\sum_{n=1}^{\infty} \frac{(2-x)^n}{n+1}$$
;

$$\mathbf{B}) \sum_{n=1}^{\infty} \frac{x^n}{3n}$$

Типовые вопросы и практические задания к экзамену за первый семестр

Задание для показателя оценивания дескриптора «Знает»	Вид задания
1. Определители 2-го и 3-го порядка, методы их вычисления.	теоретически
2. Свойства определителей.	
3. Метод Крамера для решения неоднородной СЛАУ.	
4. Минор и алгебраическое дополнение.	
5. Теорема Лапласа. Методы вычисления определителей	
произвольного порядка.	
6. Матрицы и операции над ними.	
7. Обратная матрица.	
8. Решение неоднородной СЛАУ матричным способом.	
9. Ранг матрицы. Методы нахождения ранга матрицы.	
10. Метод Гаусса для решения неоднородных СЛАУ.	
11. Метод Гаусса для решения однородных СЛАУ.	
Фундаментальная система решений.	
12. Векторы, операции над ними. Проекция вектора на ось,	
координаты и модуль вектора. Линейные операции над	
векторами, заданными координатами.	
13. Линейная зависимость векторов. Базис, система координат.	
Декартова и полярная СК.	
14. Скалярное произведение векторов.	
15. Векторное произведение векторов.	
16. Смешанное произведение векторов.	
17. Общее, каноническое, параметрическое уравнения прямой на	
плоскости. Уравнение прямой с угловым коэффициентом.	
18. Нормальное уравнение прямой на плоскости. Отклонение и	
расстояние от точки до плоскости.	
19. Угол между прямыми на плоскости. Условия параллельности и	
перпендикулярности прямых.	
20. Общее уравнение плоскости.	
21. Угол между плоскостями. Условия параллельности и	
перпендикулярности плоскостей.	
22. Нормальное уравнение плоскости. Отклонение и расстояние от	
точки до плоскости.	
23. Общее, каноническое, параметрическое уравнения прямой в	
пространстве.	
24. Угол между прямыми в пространстве. Условия параллельности	
и перпендикулярности прямых.	
25. Взаимное расположение прямой и плоскости в пространстве.	
26. Приложения линейной алгебры в задачах вычислительной	
математики и компьютерной графики.	
27. Функции одной переменной. Способы задания, классификация.	
28. Предел функции. Теоремы о пределах функции.	
29. 1 замечательный предел.	
*	
30. 2 замечательный предел.	
31. Непрерывность функции. Свойства непрерывных функций.	
32. Понятие производной.	
33. Геометрический смысл производной. Уравнения касательной и	
нормали к графику функции.	
34. Производные высших порядков.	
35. Понятие дифференциала. Дифференциалы высших порядков.	

- 36. Приложение дифференциального исчисления к задачам нахождения пределов функций. Правило Лопиталя.
- 37. Приложение дифференциального исчисления к задачам исследования функций. Построение графиков.
- 38. Возрастание, убывание функций. Точки экстремума.
- 39. Направление выпуклости и точки перегиба графика функции.
- 40. Первообразная и неопределенный интеграл.
- 41. Определение и свойства определенного интеграла.
- 42. Геометрические, физические и экологические приложения определенного интеграла. Приближенное вычисление определенного интеграла.
- 43. Несобственные интегралы I и II рода.

Задание для показателя оценивания дескриптора «Владеет»	Рид родогия
І. Вычислить предел функции	Вид задания практический
1 / 12	практический
1) $\lim_{x \to 3} \frac{2x^2 - 5x - 3}{3x^2 - 4x - 15}$;	
2) $\lim_{x \to 0} \frac{\sqrt{x+4} - \sqrt{4-x}}{\arccos 8x};$	
3) $\lim_{x \to \infty} \left(\sqrt{2x^2 - 4x - 3} - \sqrt{2x^2 - 8x} \right);$	
$4) \lim_{x \to \infty} \left(\frac{2x}{2x+1} \right)^{3x-4}$	
II.	
1) Найти производную от функции $y = \arcsin \sqrt{\sin x}$.	
2) Найти d^3y для функции $y = \ln \cos 3x$.	
3) Найти интервалы возрастания и убывания функции, точки	
экстремума $y = \frac{8x^3}{x^2 - 4}$.	
4) Написать уравнение касательной к кривой $y = x^3 - 3x^2 - x + 5$ в точке x	
=1.	
III.	
1) Найти неопределенные интегралы	
a) $\int xarctgxdx$;	
$6) \int x^2 e^{x^3 - 2} dx$	
2) Вычислить определенный интеграл $\int_{0}^{1} \sqrt{(1+2x)^3} dx$.	
3) Найти площадь фигуры, ограниченной линиями $y = x^3, y = 8, x = 0.$	

Типовые вопросы и практические задания к экзамену за второй семестр

Задание для показателя оценивания дескриптора «Знает»	Вид задания
Сформулируйте развернутые ответы на следующие	теоретический
теоретические вопросы (сформулировать основные	
определения, теоремы, свойства; привести доказательства	
основных теорем, продемонстрировать примеры, при	
необходимости проиллюстрировать ответ графиками,	
рисунками):	
1. Предел функции нескольких переменных	
2. Повторные пределы	
3. Непрерывность функции в точке	
4. Функции, непрерывные на компактах	
5. Дифференцируемость функции двух переменных	
6. Частные производные	
7. Полный дифференциал	
8. Инвариантность формы полного дифференциала	
9. Геометрический смысл полного дифференциала	
10. Условия дифференцируемости функции	
11. Производная по направлению	
12. Производная сложной функции	
13. Производные и дифференциалы высших порядков	
14. Формула Тейлора	
15. Приложение дифференциального исчисления к задачам поиска	
экстремумов функций нескольких переменных.	
16. Необходимое условие экстремума	
17. Достаточное условие экстремума	
18. Условный экстремум	
19. Двойной интеграл	
20. Тройной интеграл	
21. Сведение кратного интеграла к повторному	
22. Криволинейные интегралы	
23. Поверхностные интегралы	
24. Циркуляция векторного поля	
25. Работа силового поля	
26. Поток поля	
27. Формула Грина	
28. Формула Стокса	
29. Формула Остроградского	
30. Потенциал поля	
31. Условие потенциальности	
32. Физические и геометрические приложения кратных,	
криволинейных и поверхностных интегралов.	
33. Числовой ряд	
34. Сходимость и сумма ряда	
35. Необходимое условие сходимости	

- 36. Достаточные признаки сходимости ряда
- 37. Критерий Коши сходимости ряда
- 38. Абсолютная и условная сходимость
- 39. Признак Лейбница
- 40. Область сходимости функционального ряда
- 41. Равномерная сходимость
- 42. Признак Вейерштрасса
- 43. Свойства равномерно сходящихся рядов
- 44. Радиус сходимости
- 45. Теорема Абеля
- 46. Ряд Тейлора
- 47. Разложение функций в степенные ряды. Радиус сходимости, ряды Тейлора. Приложения степенных рядов в приближенных вычислениях значений функций.
- 48. Общий ряд Фурье
- 49. Сходимость по норме
- 50. Ортонормированные системы
- 51. Неравенство Бесселя
- 52. Равенство Парсеваля
- 53. Полнота и замкнутость
- 54. Тригонометрический ряд Фурье
- 55. Сходимость ряда Фурье
- 56. Интеграл Фурье
- 57. Преобразование Фурье. Приложение преобразования Фурье к естественнонаучным задачам.
- 58. Формула обращения
- 59. Разложение в ряд и интеграл Фурье
- 60. Диф. уравнения первого порядка и их применение в физике, технике и экологии.
- 61. Понижение порядка диф. уравнения.
- 62. Линейные диф. уравнения 2-го порядка.
- 63. Применение преобразований Фурье и Лапласа для решения диф. уравнений, встречающихся в задачах математической физики.

Задание для показателя оценивания дескриптора «Владеет»	Вид задания
1. Вычислить площадь внутри кардиоиды $r = 1 - \cos \varphi$.	практический
2. Вычислите $\iint\limits_{D} y dx dy$ по области D , ограниченной линиями	
xy = 6, $x + y - 7 = 0$.	
3. Вычислить тройные интегралы, переходя к цилиндрическим или к	
сферическим	
координатам в случае необходимости: $\iiint_D (x^2 + y^2) dx dy dz$, где D ограничена поверхностями $2z = x^2 + y^2, z = 2$.	

4. Вычислить интегралы непосредственно, и используя формулу Стокса и Остроградского:

$$\iint\limits_{S} \!\! \left(z + 2x + \frac{4}{3}\,y\right) \!\! dS \,,$$
 где S - часть плоскости $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$ в первом октанте;

5. Найти поток векторного поля $\bar{a} = x\bar{i} + y\bar{j} + z\bar{k}$ через часть плоскости x + y + z = 1,

расположенную в первом октанте, если нормаль образует острый угол с осью Q7

- 6. Разложите в ряд Тейлора функцию $y = x^4 + x^2$ по степеням (x-1)
- 7. Найти образ преобразования Лапласа оператора умножения на независимую переменную.
- 8. Найти частное решение дифференциального уравнения y^{ll} +y=0, y(0)=0, y^{l} (0)=0.