Информация о владельце:	для промежуточной аттестации по дисциплине ики и системы теплоснабжения						
Уникальны К од гр направление e3a68f3 can1667467456K29 8099d3d6bfdcf836	13.03.01 Теплоэнергетика и теплотехника						
Направленность (профиль)	Теплоэнергетика и теплотехника						
Форма обучения	Очная						
Кафедра-разработчик	Радиоэлектроники и электроэнергетики						
Выпускающая кафедра	Радиоэлектроники и электроэнергетики						

Типовые задания для контрольной работы семестр 7:

Определить пропускную способность транзитного двухтрубного теплопровода длиною (в двух направлениях) l_1 с внутренним диаметром труб d_1 , на конце которого имеется перемычка длиною l_2 с внутренним диаметром d_2 . На перемычке установлена задвижка, причем эта задвижка при расчете принимается полностью открытой. Сумма коэффициентов местных сопротивлений трубопровода в двух направлениях $\Sigma \xi_1$ и перемычки вместе с задвижкой $\Sigma \xi_2$. Разность напоров на коллекторах станции ΔH . Эквивалентная шероховатость труб k_3 .

Вариант	1	2	3	4	5	6	7	8	9	10
Длина	1000	1200	1500	1800	2200	2500	2800	3000	3500	4000
теплопровода в										
двух направлениях										
l ₁ , м										
Внутренний	100	150	207	259	408	514	612	700	800	898
диаметр труб										
d ₁ , мм										
Длина перемычки	1	1	1	1	1,5	2	2,5	3	3,5	4
l ₂ , M										
Внутренний	50	50	50	100	100	150	207	207	259	309
диаметр перемычки										
d ₂ , мм										
Сумма	16	18	20	22	24	26	28	30	32	34
коэффициентов										
местных										
сопротивлений										
трубопровода в двух направлениях Σξ ₁										
Сумма	3,5	3,5	3,5	4,0	4,5	5,0	5,5	5,5	6,0	6,5
коэффициентов	3,3	3,3	3,3	4,0	4,5	5,0	3,3	3,3	0,0	0,5
местных										
сопротивлений										
перемычки вместе с										
задвижкой										
Σξ2	l .	<u> </u>	<u> </u>	<u> </u>	<u> </u>	Ι.	<u> </u>	<u> </u>	<u> </u>	
Разность напоров	50	55	60	62	65	70	72	75	80	85
на коллекторах										
станции										
ΔН, м вод. ст.										
Эквивалентная ше-	0,2	0,5	0,5	0,5	1,0	1,0	1,0	1,0	1,0	1,0
роховатость труб										
kэ, мм										

Вопросы для подготовки к экзамену 7 семестр:

- 1. Расчетная часовая тепловая нагрузка района теплоснабжения.
- 2. Методы определения потребности промышленных потребителей, производственных и жилых зданий в паре и горячей воде.
- 3. Годовой расход теплоты.
- 4. Построение графика продолжительности сезонной тепловой нагрузки.
- 5. Построение интегрального графика отопительной нагрузки.
- 6. Теплоэлектроцентрали промышленных предприятий: назначение, классификация.
- 7. Тип установок: конденсационные с отбором пара и с противодавлением.
- 8. Теплофикационное оборудование ТЭЦ.
- 9. Способы теплоснабжения: централизованное от районных котельных, теплофикационная система, децентрализованная система.
 - 10. Основные виды и схемы централизованного теплоснабжения.
- 11. Водяные системы теплоснабжения: однотрубная, двухтрубная, трехтрубная, четырехтрубная, преимущества и недостатки.
 - 12. Присоединение потребителей в водяных системах теплоснабжения.
 - 13. Назначение и типы смесительных устройств.
 - 14. Открытые тепловые сети.
 - 15. Закрытые тепловые сети.
 - 16. Паровые системы теплоснабжения.
 - 17. Методы регулирования: центральный, групповой, местный и индивидуальный.
- 18. Тепловые характеристики теплообменных аппаратов и установок, их основные расчетные зависимости.
 - 19. Методы центрального регулирования однородной тепловой нагрузки.
- 20. Центральное регулирование разнородной тепловой нагрузки: построение графиков температур и расходов сетевой воды на отопление, вентиляцию и горячее водоснабжение.
 - 21. Центральное регулирование по совмещенной нагрузке.
- 22. Понятие о центральном регулировании закрытых и открытых систем теплоснабжения.
 - 23. Схемы и конфигурации тепловых сетей.
 - 24. Порядок гидравлического расчета.
 - 25. Пьезометрический график.
 - 26. Основные требования к режиму давлений водяных тепловых сетей.
 - 27. Выбор схемы присоединения абонентских установок.
 - 28. Методы определения расчетных расходов воды.
- 29. Определение характеристик насосов: выбор сетевых, подпиточных и подкачивающих насосов.
 - 30. Резервирование магистральных тепловых сетей.

Типовые задания для контрольной работы семестр 8:

Определить тепловые потери 1 м паропровода диаметром d/d_{BH} , проложенного на открытом воздухе с температурой t_0 °C. Средняя скорость движения воздуха w м/с. По паропроводу передается насыщенный пар с температурой τ °C. Тепловая изоляция паропровода имеет толщину δ_{II} и теплопроводность λ_{II} Вт/(м·°C). При расчете принять коэффициент теплоотдачи от пара к стенке трубы α_B Вт/(м²·°C), а коэффициент лучеиспускания поверхности изоляции С Вт/(м²·К 4). Теплопроводность стенки стальной трубы λ_{TP} Вт/(м·°C).

Вариант	1	2	3	4	5	6	7	8	9	10
Диаметр	108/	159/	219/	325/	426/	529/	630/	720/	820/	920/
паропровода	100	150	207	309	408	511	612	700	802	902
d/d _{BH} MM,										
Температура	-20	-15	-10	-8	-5	-2	0	5	10	15
наружного воздуха to, °C										
Средняя скорость	3	4	5	7	8	9	10	11	12	15
движения воздуха										
w, m/c										
Температура	130	140	150	150	160	170	180	200	220	250
насыщенного пара										
τ, °C										
Толщина тепловой	60	70	75	80	85	90	95	100	110	120
изоляции										
паропровода										
$\delta_{\rm H}$, MM										
Теплопроводность	0,07	0,08	0,09	0,1	0,1	0,11	0,11	0,12	0,12	0,12
тепловой изоляции										
паропровода										
λ _и , Bτ/(м⋅°C)										
Коэффициент	8000	8300	8500	8700	9000	9200	9500	9800	9900	9900
теплоотдачи от пара										
к стенке трубы										
$\alpha_{\rm B}$, BT/(${\rm M}^{2.}{\rm ^{\circ}C}$)										
Коэффициент	4,6	4,7	4,8	4,9	5,0	5,1	5,2	5,2	5,2	5,2
лучеиспускания										
поверхности										
изоляции С,										
Вт/(м ² ·К ⁴)										
Теплопроводность	50	52	54	56	58	60	62	63	64	65
стенки стальной										
трубы λ_{TP} ,										
Bt/(m·°C)										

Вопросы для подготовки к экзамену 8 семестр:

- 1. Гидравлическая характеристика системы и ее расчетные зависимости.
- 2. Методы построения суммарной характеристики группы включенных насосов.
- 3. Понятие о гидравлическом режиме закрытых и открытых систем.
- 4. Гидравлическая устойчивость и ее количественная оценка: понятие о коэффициенте гидравлической устойчивости.
 - 5. Гидравлический режим сетей с насосными и дросселирующими подстанциями.
 - 6. Расчет потокораспределения в кольцевых сетях.
 - 7. Гидравлический удар в тепловых сетях и формула его расчета.
- 8. Устройства, применяемые для защиты системы теплоснабжения от недопустимого повышения давления при ударе.
- 9. Типы и схемы абонентских установок, водоводяные подогревательные установки, смесительные узлы, аккумуляторы теплоты, автоматизация подстанций.
 - 10. Регулирующие клапана и методы их подбора.
 - 11. Конструкция теплопроводов.
- 12. Основные требования к конструкциям теплопроводов; преимущества и недостатки подземных теплопроводов в проходных каналах, непроходных и бесканальных.

- 13. Основные методы защиты подземных трубопроводов от наружной коррозии и коррозии под воздействием блуждающих токов.
 - 14. Основные требования к теплоизоляционным конструкциям теплопроводов.
 - 15. Трубы и их соединения; опоры.
 - 16. Компенсация температурных деформаций.
- 17. Основные расчетные зависимости; методика теплового расчета элементов тепловых сетей.
 - 18. Тепловые потери и коэффициент эффективности тепловой изоляции.
 - 19. Выбор толщины теплоизоляционного слоя.
 - 20. Повышение надежности и качества теплоснабжения.
 - 21. Методы обнаружения и ликвидации повреждений в системах теплоснабжения.
 - 22. Испытание и организация эксплуатации тепловых сетей.