Документ подпис О ценотеньценма периал информация о владельце: ФИО: Косенок Сергей Михайлович Должность: ректор Дата подписания: 21.10.2025 14:49:47	ы для промежуточной аттестации по дисциплине <i>Тепловые электростанции</i>
Уникальн ь Код гр направление e3a68f3ea n16616 54 158f49 8099d3d6bfdcf836	13.03.01 Теплоэнергетика и теплотехника
Направленность (профиль)	Теплоэнергетика и теплотехника
Форма обучения	Очная
Кафедра-разработчик	Радиоэлектроники и электроэнергетики
Выпускающая кафедра	Радиоэлектроники и электроэнергетики

Задание для контрольной работы семестр 7:

Для конденсационного энергетического блока по данным из таблицы 1 определить:

- 1. Термический КПД энергоблока η_t;
- 2. Транспортный КПД $\eta_{тр}$;

сом, р_{пн}

МΠа

20,0

18,0

18,0

34,0

34,0

35,0

35,0

35,0

35,0

35,0

Последняя

- 3. Внутренний относительный КПД турбины η_{oi} ;
- 4. Внутренний абсолютный КПД турбины ηі;
- 5. Абсолютный электрический КПД турбоустановки η_{09} ;
- 6. Абсолютный электрический КПД энергоблока η_c ;
- 7. Удельный расход теплоты на турбоустановку $q_{\text{ту}}$;
- 8. Удельный расход теплоты на станции qc;
- 9. Удельный расход условного топлива b_v.

Исходные данные для расчета экономичности конденсационного блока Условия и Размер-Цифры Варианты шифра показатели ность 2 3 4 5 7 8 0 студента Электрическая МВт 210 160 200 310 300 505 810 1200 300 500 мощность блока, N₂ Последняя Параметры пара за котлом: давление р'₀ МΠа 14,0 14,0 14,0 25,5 25,5 25,5 25,5 25,5 25,5 25,5 Последняя температура, t'₀ °C 545 545 545 545 545 545 545 545 545 545 Последняя Параметры перед турбиной: давление р_о 13,0 13,0 24,0 24,0 24,0 МΠа 13,0 24,0 24,0 24,0 24,0 Последняя температура, t_o 540 540 540 540 540 540 540 540 540 °C 535 Последняя Расход свежего паpa, Do Последняя т/ч 565 436 560 890 865 1500 2400 3600 910 1540 Промежуточный перегрев пара (расход в % от свеже- $\frac{D_{nn}}{100}$ го), D_{o} 84 % 88 90 88 82 83 84 82 83 84 Предпослед. Параметры промперегрева: давление р'_{пп} 2,40 4,0 МΠа 3,25 2,33 4,2 4,6 3,8 3,9 4,0 4,6 Последняя температура, t'_{пп} °C 346 345 300 305 310 300 300 300 310 371 Последняя Давление воды за питательным насо-

Условия и показатели	Размер- ность		Варианты									
		1	2	3	4	5	6	7	8	9	0	шифра студента
Параметры после промперегрева:												
- давление р"	МПа	2,10	2,85	2,05	3,6	3,8	4,2	3,4	3,5	3,6	4,2	Последняя
 температура, t_{пп} 	°C	545	545	545	545	545	545	545	545	545	545	Последняя
Параметры отработавшего пара:												
- давление р _к	кПа	4,0	3,5	3,5	3,8	3,5	3,5	4,0	3,5	4,0	5,0	Предпослед.
- энтальпия, h _к	кДж/кг	2450	2430	2440	2420	2410	2400	2420	2400	2420	2440	Предпослед.
Температура питательной воды: - за последним по-												
догревателем высо-												
кого давления, $t'_{\text{пв}}$	°C	232	228	230	265	268	262	260	278	262	240	Последняя
- перед котлом, $t_{\text{пв}}$	°C	230	226	228	263	266	260	258	276	260	238	Последняя
Потери рабочей среды в цикле (в %												
от расхода пара на турбину), $\beta_{\pi} \cdot 100$	%	2,5	2,0	2,6	2,5	2,2	2,0	2,4	2,3	2,1	2,0	Предпослед.
КПД котлоагрегата,												
нетто, $\eta_{\kappa a}$	%	87	88	90	89	91	89	88	87	90	91	Предпослед.
Электромеханический КПД генерато-												
$pa,\ \eta_{_{9M}}$	%	96	95	97	95	96	94	97	95	94	96	Предпослед.

Вопросы для подготовки к экзамену 7 семестр:

- 1. Задачи дисциплины.
- 2. Особенности ТЭС промышленных предприятий.
- 3. Классификация ТЭС.
- 4. Принципиальные технологические схемы ТЭС.
- 5. Характеристика тепловой экономичности ТЭС: КПД, удельные расходы теплоты топлива.
 - 6. Общая характеристика и состав, начальные параметры пара на ТЭС.
- 7. Предельные значения начальной температуры пара для стационарных паровых турбин.
 - 8. Выбор начальных и конечных параметров пара на ТЭС.
 - 9. Выбор оптимального давления промперегрева.
 - 10. Пути повышения экономичности существующих ТЭС.
 - 11. Метод определения эффективности регенеративного подогрева.
 - 12. Распределение регенеративного подогрева и дренажа конденсата.
 - 13. Схемы включения регенеративных подогревателей.
- 14. Источники экономии топлива при комбинированном производстве тепловой и электрической энергии.
 - 15. Коэффициент теплофикации.
 - 16. Промышленные потребители топлива, тепла и электроэнергии.
 - 17. Работа ТЭЦ как элемента тепловой схемы промышленного предприятия.
 - 18. Использование вторичных энергоресурсов предприятий.
 - 19. Влияние параметров отпускаемого тепла и его количества на выбор теплоносителя.
 - 20. Схема отпуска тепла с применением паропреобразователя.
 - 21. Выбор оптимальной схемы отпуска тепла от ТЭЦ.
 - 22. Потери рабочего тепла в цикле и их восполнение.
 - 23. Испарительные установки.
 - 24. Схемы включения деаэраторов в тепловую схему станции.
 - 25. Деаэрация в конденсаторе турбин.

Задание для контрольной работы семестр 8:

Составить и рассчитать принципиальную тепловую схему ТЭЦ.

Требующиеся для расчета дополнительные величины принять по данным рекомендуемых выше учебных пособий или справочной литературе.

В расчете принять:

- 1. Типы котлов: энергетических барабанные; пиковых водогрейные.
- 2. Электромеханический КПД турбогенератора $\eta_{\text{эм}} = 0.97$.
- 3. Тип деаэратора: повышенного давления р_д=0,6 МПа.
- 4. При выборе схемы использования тепла продувочной воды при двухступенчатой

схеме сепарации принять: выпар из первой ступени направляется в деаэратор, из второй — поступает в $\Pi H \Pi = 2$; тепло продувочной воды после сепараторов используется для подогрева химически обессоленной воды в поверхностном теплообменнике.

- 5. Конденсат пара, расходуемого на собственные нужды котельного и турбинного цехов, не теряется; энтальпию конденсата принять равной энтальпии питательной воды в деаэраторе.
 - 6. Внутристанционные потери конденсата принять условно из деаэратора.
- 7. Коэффициент полезного действия деаэратора, регенеративных и сетевых подогревателей принять η_n =0,98.
 - 8. Коэффициент полезного действия питательного насоса принять $\eta_{\rm H}$ =0,81.
 - 9. Характеристику теплофикационных турбин принять по таблице.
- 10. Все регенеративные подогреватели принимаются со встроенными охладителями конденсата греющего пара. Переохлаждение конденсата принимается до значения энтальпии на 40 кДж/кг выше энтальпии питательной воды на входе в подогреватель.

Исходные данные для расчета тепловой схемы теплоэлектроцентрали

Условия и показатели	Раз- мер-		Варианты										
1103143411	ность	1	2	3	4	5	6	7	8	9	0	студента	
Электрическая мощность ТЭЦ,													
N ₃	МВт	25	25	50	100	25	25	60	60	50	175	Последняя	
Тип турбоустано- вок	_	T- 25- 90	T- 25- 90	T- 50- 130	T-100- 130	ПТ- 25- 90/10	ПТ- 25- 90/10	ПТ- 60- 90/13	ПТ-60- 130/13	ПТ- 50- 130/7	T- 175/210- 130	Последняя	
Параметры перед турбиной: - давление р _о - температура, t _o	МПа °С	9,0 500	9,0 500	13,0 565	13,0 565	9,0 500	9,0 535	9,0 535	13,0 565	13,0 565	13,0 550	Последняя	
Давление в кон- денсаторе, р _к	кПа	3,5	5	5	5,4	3,5	5	3	5	5,6	4	Последняя Предпоследняя	
Внутренний относительный КПД по отсекам: ЧВД, $\eta_{oi}^{\text{ЧВД}}$	-	0,82	0,82	0,83	0,84	0,80	0,80	0,81	0,82	0,82	0,85	Последняя	
ЧСД, η ^{чСД} ЧНД, η ^{чНД}	-	- 0,70	- 0,70	- 0,74	- 0,76	0,83 0,70	0,83 0,70	0,85 0,71	0,87 0,72	0,86 0,72	- 0,76	Последняя Последняя	

Условия и показатели	Раз- мер-	Варианты										Цифры шифра студента
	ность	1	2	3	4	5	6	7	8	9	0	Студенти
Коэффициент дросселирования												
пара в регулирующих клапанах:												
ЧВД, η ^{ЧВД}	-	0,96	0,96	0,95	0,96	0,95	0,96	0,96	0,96	0,95	0,96	Последняя
ЧСД, $\eta_{ap}^{ЧСД}$	-	-	-	-	-	0,86	0,87	0,86	0,88	0,87	-	Последняя
чнд, η ^{чнд}	-	0,86	0,85	0,845	0,88	0,82	0,83	0,85	0,86	0,88	0,90	Последняя
Давление регулируемых отборов:												
- промышленного, p _{пр}	МПа	-	-	-	-	1,0	1,0	1,3	1,3	0,7	-	Последняя
- теплофикационного, p _{от}	МПа	0,12	0,12	0,10	0,8	0,12	0,12	0,12	0,10	0,08	0,09	Последняя
Отбор пара из промышленного												
отбора, Dпр	т/ч	-	-	-	-	72	70	140	115	118	-	Последняя
Возврат конденсата с производ-												
ства, авк	%	-	-	-	-	60	50	70	40	50	-	Последняя
Энтальпия конденсата, возвра-												_
щаемого с производства, h _{вк}	кДж/кг	-	-	-	-	290	250	170	210	170	-	Последняя
Нагрузка теплофикационного от-												_
бора, Q _{от}	ГДж/ч	210	190	280	660	120	105	210	170	250	1250	Последняя
	0.00	150/	140/	150/	145/	130/	150/	120/	130/	150/	140/	_
Температурный график сети, t ₂ /t ₁	°C	70	65	70	67	60	70	55	60	70	65	Предпоследняя
Продувка котлов (в % от D_{nx}), α_{np}	%	1,5	1,8	2,0	1,4	1,6	1,8	2,0	1,3	1,5	1,6	Предпоследняя
Количество ступеней сепаратора непрерывной продувки		١,	2	2	2	1	1	2	2	١, ١	2	Предпоследняя
Паровые собственные нужды ко-	-	,	- 4	-	- 2	1	1	- 4	- 4	1	- 2	Предпоследняя
тельного отделения (в % от $D_{nк}$),												
$\alpha_{\rm CH}^{\rm KS}$										١		
исн	%	1,25	1,30	1,20	1,10	1,20	1,20	1,25	1,30	1,1	1,15	Предпоследняя
Паровые собственные нужды тур- бинного отделения (в % от D _m),												
α _{cH} ^{M3}	%	1,20	1,25	1,10	1,15	1,00	1,10	1,15	1,10	1,00	1,10	Предпоследняя
Внутристанционные потери												
конденсата (в % от \mathbf{D}_{ns}), α_{yr}	%	2,0	1,70	1,50	1,60	1,20	1,25	1,30	1,40	1,35	1,40	Предпоследняя
Температура химочищенной во-												
ды, t _{хов}	°C	30	28	28	28	35	32	30	35	30	30	Предпоследняя
Нагрев воды в сальниковом и												
эжекторном подогревателях, Δt_{xx}	°C	3,0	4,0	3,5	2,5	3,0	3,3	3,5	3,2	3,0	3,5	Предпоследняя

Вопросы для подготовки к экзамену 8 семестр:

- 1. Тепловая схема ТЭС.
- 2. Анализ тепловых схем с помощью коэффициента ценности тепла и коэффициента изменения мощности.
- 3. Полная тепловая схема ТЭС.
- 4. Схемы трубопроводов питательной воды, схемы паропроводов на ТЭС.
- 5. Технико -экономический основы выбора коэффициента теплофикации для промышленных ТЭС.
- 6. Выбор типа, числа, тепловой и электрической мощности турбин, котлов и теплофикационных подогревателей для промышленных ТЭС.
 - 7. Особенности выбора основного оборудования промышленной ТЭС.
- 8. Выбор вспомогательного оборудования. Энергетические характеристики турбин, диаграмма режимов турбины с одним отбором, с двумя отборами.
 - 9. Технологические схемы, параметры и эффективность ГТУ и ПГУ.
 - 10. Комбинированная выработка энергии на ГТУ и ПГУ.
- 11. Особенности водоснабжения на промышленных тепловых электростанциях и ее связь с системой водоснабжения промышленного предприятия.
 - 12. Определение потребности в воды и выбор системы водоснабжения.
 - 13. Водоохлаждающие устройства.
- 14. Основные факты, обуславливающие загрязнение окружающей среды при работе ТЭС.

- 15. Газопылевые выбросы, их характеристика.
- 16. Предельно-допустимые концентрации вредных веществ, содержащихся в дымовых газах при разных видах топлива и в окружающем станцию воздушном бассейне.
- 17. Газоочистительные устройства: инерционные фильтры, мокрые золоуловители, электрофильтры, рукавные фильтры.
- 18. Расположение промышленных электростанций и их привязка к тепловым потребителям.
 - 19. Генеральный план и компоновка главного здания электростанции.
- 20. Режим работы, графики нагрузок и их влияние на работу ТЭС, методы выравнивания нагрузок.
 - 21. Автоматизация ТЭС и методы управления с помощью ЭВМ.
 - 22. Технический учет, планирование, наладка режимов.
 - 23. Собственные нужды ТЭС, основные пути их снижения.
 - 24. Дымовые трубы ТЭС, расчет высоты дымовой трубы.
 - 25. Меры борьбы с загрязнением атмосферы.