Документ подпоненочивые рызовить для промежуточной аттестации по дисциплине

Информация о владельце:

ФИО: Косенок Сергей Михайлович

Должность: ректор

Дата подписания: 21.10.2025 14:49:47

:47

Нагнетатели и тепловые двигатели

Уникальный программный ключ:

e3a68f3eaa1e62674b54f4998099d3d6bfdcf836

Код, направление подготовки	13.03.01 Теплоэнергетика и теплотехника
Направленность (профиль)	Теплоэнергетика и теплотехника
Форма обучения	Очная
Кафедра-разработчик	Радиоэлектроники и электроэнергетики
Выпускающая кафедра	Радиоэлектроники и электроэнергетики

Типовые задания для контрольной работы, 5 семестр

Расчет центробежного вентилятора

Вентилятор имеет вращающийся ротор, состоящий из лопаток спиральной формы. Воздух через входное отверстие засасывается вовнутрь ротора, где он

приобретает вращательное движение и, за счет центробежной силы и специальной формы лопаток, направляется в выходное отверстие специального спирального кожуха. Таким образом, выходной поток воздуха находится под прямым углом к входному. Данный вид вентилятора широко применяется в промышленности.

7

Центробежные вентиляторы из алюминиевых сплавов, (укомплектованные взрывозащитными электродвигателями, по уровню защиты от искрообразования) относятся к вентиляторам с повышенной защитой, то есть к вентиляторам, в которых предусмотрены средства и меры, затрудняющие возникновение опасных искр.

Вентиляторы предназначены для перемещения газопаровоздушных

взрывоопасных смесей с температурой не выше $80^{\rm o}$ C, не вызывающих ускоренный коррозии проточной части вентиляторов, не содержащих взрывчатых

веществ, взрывоопасной пыли, липких и волокнистых материалов с запыленностью не более $10~{\rm Mr/m^3}.$ Температура окружающей среды должна быть в пределах от $-40~{\rm дo}+45~{\rm ^\circ C}.$ Производительность $V=90\cdot10^3~{\rm m^3}$ / час.

Задание:

- 1. Выбрать конструкцию.
- 2. Определить окружную скорость.
- 3. Определить относительный угол входа.
- 4. Определить диаметр колеса на входе.
- 5. Определить диаметр колеса на выходе.
- 6. Определить скорость вращения вала.
- 7. Выбрать число оборотов.
- 8. Определить гидравлический КПД вентилятора.
- 9. Определить относительные потери давления.
- 10. Вычислить полный КПД вентилятора.
- 11. Определить углы установки лопаток.
- 12. Определить количество лопаток
- 13. Определить угол входа.
- 14. Определить радиусы изгиба лопаток и окружности центров.

- 15. Определить угловой шаг лопаток.
- 16. Определить ширину лопаток.
- 17. Определить размеры кожуха.
- 18. Определить мощность потребляемая вентилятором.

Типовые вопросы к экзамену в 5 семестре:

- 1. Дайте определение теплового двигателя.
- 2. Какова роль нагнетателей и тепловых двигателей в системах теплоэнергоснабжения промышленных предприятий?
 - 3. Назовите типы коммуникаций в системах теплоэнергоснабжения.
 - 4. Дайте определение КПД теплового двигателя.
 - 5. Перечислите факторы, влияющие на КПД теплового двигателя.
 - 6. В чем отличие двигателей внутреннего и внешнего сгорания?
 - 7. Какие термодинамические процессы реализуются в тепловом двигателе.
 - 8. Перечислите известные Вам циклы тепловых двигателей.
- 9. Какие основополагающие уравнения термодинамики положены в основу расчета нагнетателей и тепловых двигателей?
 - 10. Назовите основные конструктивные схемы поршневых компрессоров.
 - 11. Перечислите основные элементы схем.
 - 12. Что такое относительное мертвое пространство поршневого компрессора?
 - 13. Объемная, массовая, приведенная производительность компрессора?
- 14. Какие допущения вводятся при рассмотрении теоретического процесса поршневого компрессора?
 - 15. Что такое индикаторная диаграмма поршневого компрессора?
- 16. Какие потери учитываются при рассмотрении действительного процесса поршневого компрессора?
- 17. Что такое коэффициент наполнения, коэффициент стабильности, объемный коэффициент компрессора?
 - 18. Как определяется индикаторная мощность компрессора?
- 19. Как определяются относительные потери на всасывании и нагнетании поршневого компрессора?
 - 20. Каковы условия перехода на многоступенчатое сжатие и его преимущества?
 - 21. Что такое оптимальная степень повышения давления и чем она обусловлена?
 - 22. Что такое коэффициент утечек, коэффициент производительности поршневого компрессора?
 - 23. Перечислите основные параметры поршневого компрессора.
 - 24. Перечислите основные конструктивные размеры поршневого компрессора
 - 25. В чем состоит смысл динамического расчета механизма движения поршневого компрессора?
 - 26. Опишите конструкцию мембранного компрессора.
 - 27. Назовите наиболее распространенные конструкции роторных нагнетателей.
 - 28. Опишите конструкцию компрессора с качающимся поршнем.
 - 29. Опишите конструкцию ротационно-пластинчатого компрессора.
 - 30. Опишите конструкцию жидкостно-кольцевого компрессора.
 - 31. Опишите конструкцию компрессора типа Рутс.
 - 32. Опишите конструкцию винтового компрессора
 - 33. Дайте описание рабочего процесса винтового компрессора.
 - 34. Из каких фаз состоит рабочий цикл винтового компрессора?
 - 35. Какие основные характеристики винтового зацепления компрессора?
 - 36. Назовите внутренние и внешние потери винтового компрессора.
- 37. Каково назначение эксцентриситета между ротором и статором у ротационно-пластинчатого компрессора?
 - 38. Какова роль разгрузочных колец у ротационно-пластинчатого компрессора?
 - 39. Какие основные потери в ротационно-пластинчатом компрессоре?
 - 40. Каковы преимущества и недостатки маслозаполненных винтовых компрессоров?

Типовое задание на курсовой проект, 6 семестр

Расчет турбины

Исходные данные, варьируемые преподавателем, при выдаче варианта: начальная температура газов перед турбиной (по параметрам торможения) $T_c^*=1200~\mathrm{K}$; конечное давление (по параметрам торможения) $P_d^*=10^5~\mathrm{\Pi a}$ (1,02 ат); отношение давлений в турбине $\delta=7,0$; расход газа $G=140~\mathrm{kr/c}$; частота вращения $n=50c^{-1}$.

Содержание проекта: пояснительная записка, графическая часть.

Разделы пояснительной записки:

- 1. Введение.
- 2. Анализ выбранной конструкции.
- 3. Расчет турбины.
- 4. Заключение.
- 5. Литература.

Графическая часть:

Сборочный чертеж газовой турбины

Типовые вопросы к экзамену в 6 семестре:

- 1. Дайте определение теплового двигателя.
- 2. Какова роль нагнетателей и тепловых двигателей в системах теплоэнергоснабжения промышленных предприятий?
 - 3. Назовите типы коммуникаций в системах теплоэнергоснабжения.
 - 4. Дайте определение КПД теплового двигателя.
 - 5. Перечислите факторы, влияющие на КПД теплового двигателя.
 - 6. В чем отличие двигателей внутреннего и внешнего сгорания?
 - 7. Какие термодинамические процессы реализуются в тепловом двигателе.
 - 8. Перечислите известные Вам циклы тепловых двигателей.
- 9. Какие основополагающие уравнения термодинамики положены в основу расчета нагнетателей и тепловых двигателей?
 - 10. Назовите основные конструктивные схемы поршневых компрессоров.
 - 11. Перечислите основные элементы схем.
 - 12. Что такое относительное мертвое пространство поршневого компрессора?
 - 13. Объемная, массовая, приведенная производительность компрессора?
- 14. Какие допущения вводятся при рассмотрении теоретического процесса поршневого компрессора?
 - 15. Что такое индикаторная диаграмма поршневого компрессора?
- 16. Какие потери учитываются при рассмотрении действительного процесса поршневого компрессора?
- 17. Что такое коэффициент наполнения, коэффициент стабильности, объемный коэффициент компрессора?
 - 18. Как определяется индикаторная мощность компрессора?
- 19. Как определяются относительные потери на всасывании и нагнетании поршневого компрессора?
 - 20. Каковы условия перехода на многоступенчатое сжатие и его преимущества?
 - 21. Что такое оптимальная степень повышения давления и чем она обусловлена?
 - 22. Что такое коэффициент утечек, коэффициент производительности поршневого компрессора?
 - 23. Перечислите основные параметры поршневого компрессора.
 - 24. Перечислите основные конструктивные размеры поршневого компрессора
 - 25. В чем состоит смысл динамического расчета механизма движения поршневого компрессора?

- 26. Опишите конструкцию мембранного компрессора.
- 27. Назовите наиболее распространенные конструкции роторных нагнетателей.
- 28. Опишите конструкцию ротационно-пластинчатого компрессора.
- 29. Опишите конструкцию жидкостно-кольцевого компрессора.
- 30. Опишите конструкцию компрессора типа Рутс.
- 31. Опишите конструкцию винтового компрессора
- 32. Дайте описание рабочего процесса винтового компрессора.
- 33. Из каких фаз состоит рабочий цикл винтового компрессора?
- 34. Какие основные характеристики винтового зацепления компрессора?
- 35. Назовите внутренние и внешние потери винтового компрессора.
- 36. Каково назначение эксцентриситета между ротором и статором у ротационно-пластинчатого компрессора?
 - 37. Какова роль разгрузочных колец у ротационно-пластинчатого компрессора?
 - 38. Какие основные потери в ротационно-пластинчатом компрессоре?
 - 39. Каковы преимущества и недостатки маслозаполненных винтовых компрессоров?
 - 40. Опишите принцип действия насосов и вентиляторов центробежного типа.
 - 41. Опишите схему насоса и вентилятора центробежного типа?
 - 42. Какие геометрические размеры характеризуют центробежную ступень?
 - 43. Что такое радиальная решетка профилей?
 - 44. Назовите геометрические характеристики радиальной решетки профилей.
 - 45. Что такое ступень турбокомпрессора?
 - 46. Каково влияние углов входной и выходной кромок лопастей на характеристики ступени?
 - 47. Изобразите теоретические характеристики центробежных турбомашин.
 - 48. Каково назначение рабочего колеса?
 - 49. Каково назначение диффузора?
 - 50. Почему выходное устройство выполняется в виде улитки?
 - 51. Что такое коэффициент напора и гидравлический КПД?
 - 52. Что такое давление, развиваемое вентилятором?
 - 53. Что такое самотяга?
 - 54. Что такое сеть и ее характеристика?
 - 55. Изобразите принципиальную схему осевого насоса и вентилятора.
 - 56. Что такое плоская решетка профилей?
 - 57. Как связаны треугольники скоростей с профилем решетки профилей?
 - 58. Что такое кавитация?
- 59. Как определяются характеристики при последовательном и параллельном соединении насосов и вентиляторов?
 - 60. Каковы особенности конструкции и расчета дымососов?
 - 61. Раскажите о преобразовании энергии в турбинной ступени.
 - 62. Как связаны треугольники скоростей с решеткой профилей турбинной ступени?
 - 63. Какие геометрические соотношения характеризуют турбинную ступень?
 - 64. Что такое относительный лопаточный КПД ступени?
 - 65. Что такое степень реактивности?
 - 66. Что такое ступень турбины?