Документ подп**Ощенючины срмастермальы для промежуточной аттестации по дисциплине**

Информация о владельце:

ФИО: Косенок Сергей Михайлович

Должность: ректор

Дата подписания: 21.10.2**9 сновы трансформации теплоты и процессов охлаждения**

Уникальный программный ключ:

e3a68f3eaa1e62674b54f4998099d3d6bfdcf836

Код, направление подготовки	13.03.01 Теплоэнергетика и теплотехника
Направленность (профиль)	Теплоэнергетика и теплотехника
Форма обучения	Очная
Кафедра-разработчик	Радиоэлектроники и электроэнергетики
Выпускающая кафедра	Радиоэлектроники и электроэнергетики

Типовые задания для контрольной работы 4 семестр:

Задание выдается преподавателем индивидуально для каждого.

В табл. 1 приведены варианты заданий для самостоятельной работы студентов.

Варианты заданий

Таблица	1

Обозначение -		Варианты						
Ооозначение	1	2	3	4	5			
Холодопроизводительность Q_{0} , кВт	10	20	30	40	50			
Температура кипения t_0 , °С	- 5	- 10	- 15	- 20	- 25			
Температура конденсации t, °C	40	35	30	25	20			

Окончание табл. 1

Обозначение		Варианты					
Ооозначение	6	7	8	9	10		
Холодопроизводительность $\mathbf{Q}_{\mathbf{o}}$, кВт	60	70	80	90	100		
Температура кипения t_0 , °С	- 30	- 5	- 10	- 15	- 20		
Температура конденсации t, °C	15	40	35	30	25		

Обозначение		Варианты					
Ооозначение	11	12	13	14	15		
Холодопроизводительность $\mathbf{Q}_{\mathbf{o}}$, кВт	110	120	130	140	150		
Температура кипения t_0 , °С	- 25	- 30	- 5	- 10	- 15		
Температура конденсации t, °C	20	15	40	35	30		

Оборующом		Варианты					
Обозначение	16	17	18	19	20		
Холодопроизводительность $\mathbf{Q}_{\mathbf{o}}$, кВт	160	170	180	190	200		
Температура кипения t_0 , °С	- 20	- 25	- 30	- 5	- 10		
Температура конденсации t, °C	25	20	15	40	35		

Обозначение		Варианты					
Ооозначение	21	22	23	24	25		
Холодопроизводительность \mathbf{Q}_{0} , кВт	210	220	230	240	250		
Температура кипения t_0 , °С	- 15	- 20	- 25	- 30	- 35		
Температура конденсации t, °C	30	25	20	15	10		

Задача 1. Тепловой расчет одноступенчатой аммиачной холодильной машины

Для холодильной машины, работающей на R717 (аммиак) предварительно задаются:

- температура перегрева пара на всасывании при $\Delta t_{BC} = 5-15$ °C, $t_1 = t_o + \Delta t_{BC}$;
- температура переохлаждения жидкости после конденсатора при $\Delta t_n = 3-5$ °C, $t_3 = t \Delta t_n$.

В соответствии со схемой и циклом паровой холодильной машины (рис. 2) по диаграмме и таблице 1 определяют параметры узловых точек, которые представляют в табличной форме (табл. 2, 3).

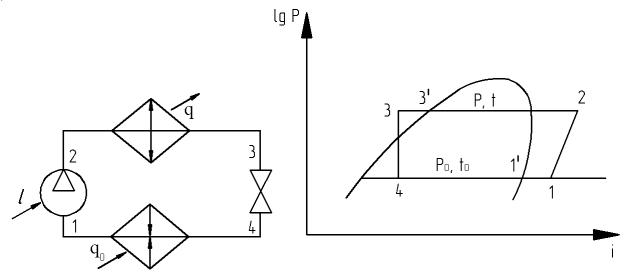


Рис. 2. Схема и цикл паровой холодильной машины

Таблица 2

Параметры узловых точек

П	Узловые точки					
Параметр	1	2	3'	3	4	1'
Давление Р, МПа						
Температура t, °С						
Энтальпия і, кДж/кг						
Удельный объем υ , м ³ /кг						

Результаты теплового расчета

Определяемая величина	Формула	Результат
1	2	3
Удельная массовая холодопроизводительность, кДж/кг	$q_0 = i_1 - i_4$	
Удельная объемная холодопроизводительность, кДж/м ³	$q_{\upsilon} = \frac{q_{o}}{\upsilon_{1}}$	
Удельная массовая нагрузка на конденсатор, кДж/кг	$q = i_2 - i_3$	
Удельная изоэнтропийная работа компрессора, кДж/кг	$l_{s} = i_2 - i_1$	
Степень повышения давления	$\pi_{K} = \frac{P}{P_{O}}$	
Холодильный коэффициент теоретический	$\varepsilon = \frac{\mathbf{q_0}}{l}$	

Окончание табл. 3

1	2	3
Массовый расход рабочего вещества, кг/с	$G = \frac{Q_o}{q_o}$	
Действительная объемная производительность компрессора, м ³ /с	$V_{\text{A}} = G \cdot v_1$	
Нагрузка на конденсатор, кВт	$Q = G \cdot q$	
Изоэнтропийная мощность компрессора, кВт	$N_S = G \cdot l_S$	

Задача 2. Тепловой расчет одноступенчатой холодильной машины с регенеративным теплообменником

Холодильная машина с регенеративным теплообменником обычно работает на фреонах R12, R22, R134, R404 и т.д. (рис. 3).

В цикле с теплообменником перегрев на всасывании в компрессор принимается $\Delta t_{BC}=15-25$ °C, $t_1=t_0+\Delta t_{BC}$. Состояние рабочего вещества в точке 4 определяется из баланса теплообменника $i_1-i_{1'}=i_3-i_4$, откуда $i_4=i_3-\left(i_1-i_{1'}\right)$.

В соответствии со схемой и циклом паровой холодильной машины с регенерацией теплоты (рис. 3) по диаграмме и таблице 1 определяют параметры узловых точек, которые представляют в табличной форме (табл. 4, 5).

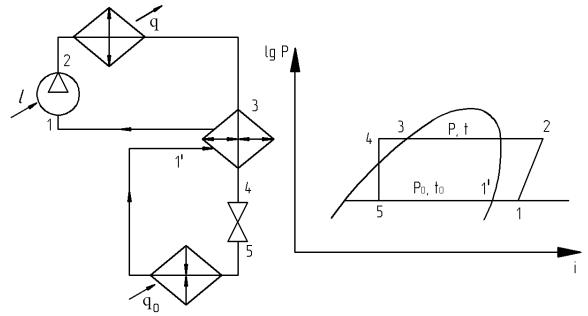


Рис. 3. Схема и цикл паровой холодильной машины с регенерацией теплоты

Таблица 4

Параметры узловых точек

Поможети	Узловые точки					
Параметр	1	1'	2	3	4	5
Давление Р, МПа						
Температура t, °С						
Энтальпия і, кДж/кг						
Удельный объем v , $m^3/кг$				-	-	-

Таблица 5

Результаты теплового расчета

Определяемая величина	Формула	Результат
Удельная массовая холодопроизводительность, кДж/кг	$q_0 = i_{1'} - i_5$	
Удельная массовая нагрузка на конденсатор, кДж/кг	$q = i_2 - i_3$	
Удельная изоэнтропийная работа компрессора, кДж/кг	$l_{s} = i_{2} - i_{1}$	
Удельная массовая нагрузка на теплообменник, кДж/кг	$q_{\mathrm{T}} = i_1 - i_{1'}$	
Удельная объемная холодопроизводительность, кДж/м ³	$q_{\upsilon} = \frac{q_{o}}{\upsilon_{1}}$	
Степень повышения давления	$\pi_{K} = \frac{P}{P_{O}}$	
Холодильный коэффициент теоретический	$\varepsilon = \frac{\mathbf{q_o}}{l}$	
Массовый расход рабочего вещества, кг/с	$G = \frac{Q_O}{q_O}$	
Действительная объемная производительность компрессора, м ³ /с	$V_{\mathcal{I}} = G \cdot v_1$	
Нагрузка на конденсатор, кВт	$Q = G \cdot q$	
Нагрузка на теплообменник, кВт	$Q_{T} = G \cdot q_{T}$ $N_{S} = G \cdot l_{S}$	
Изоэнтропийная мощность компрессора, кВт	$N_s = G \cdot l_s$	

Задача 3. Тепловой расчет двухступенчатой холодильной машины

Холодильная двухступенчатая машина может работать на любом рабочем веществе пригодном для парового цикла (рис. 4).

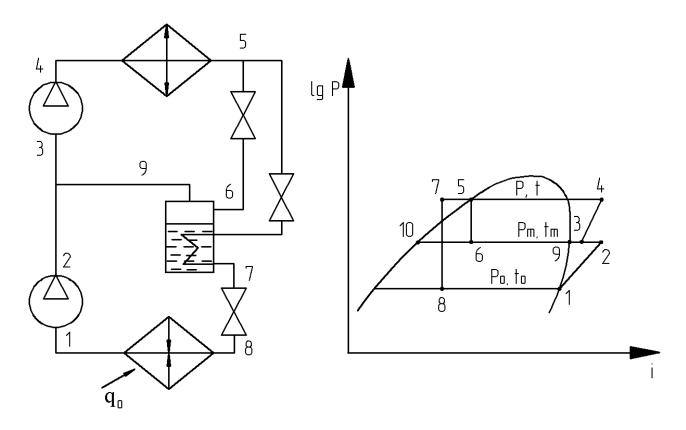


Рис. 4. Схема и цикл двухступенчатой паровой холодильной машины

В соответствии со схемой и циклом двухступенчатой паровой холодильной машины (рис. 4) по диаграмме и таблице 1 определяют параметры узловых точек, которые представляют в табличной форме (табл. 6, 7).

Параметр

Давление Р, МПа Температура t, °С Энтальпия i, кДж/кг

Удельный объем v, $m^3/\kappa \Gamma$

Параметры узловых точек

 Узловые точки

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

Таблица 6

Результаты теплового расчета

Определяемая величина	Формула	Результат
Промежуточное давление, МПа	$P_{\rm m} = \sqrt{P \cdot P_{\rm o}}$	
Температура в точке 7, °C	$t_7 = t_m + 5$	
Массовый расход рабочего вещества в первой ступени, кг/с	$G_1 = \frac{Q_o}{(i_1 - i_8)}$	
Массовый расход рабочего вещества во второй ступени, кг/с	$G_2 = \frac{G_1(i_9 - i_8)}{i_9 - i_6}$	
Энтальпия рабочего вещества на входе в компрессор второй ступени, кДж/кг	$i_3 = i_9 + \frac{G_1(i_2 - i_3)}{G_2}$	
Изоэнтропийная мощность компрессора первой ступени, кВт	$N_1 = G_1(i_2 - i_1)$	
Изоэнтропийная мощность компрессора второй ступени, кВт	$N_2 = G_2 \left(i_4 - i_3 \right)$	
Нагрузка на конденсатор, кВт	$Q = G_2(i_4 - i_5)$	
Действительная объемная производительность компрессора первой ступени, м ³ /с	$V_1 = G_1 \cdot v_1$	
Действительная объемная производительность компрессора второй ступени, м ³ /с	$V_2 = G_2 \cdot v_3$	
Холодильный коэффициент теоретический	$\varepsilon = \frac{Q_o}{\left(N_1 + N_2\right)}$	
Коэффициент ϕ	$\varphi = \frac{V_1}{V_2}$	

Задача 4. Тепловой расчет газовой (воздушной) холодильной машины

Для холодильной машины, работающей на воздухе предварительно задается температура воздуха на входе в детандер $T_3=T_0$, K; степень сжатия в компрессоре π_K берется из задачи 1 или задачи 2. (рис. 5).

В соответствии со схемой и циклом газовой холодильной машины (рис. 5) по диаграмме и таблице 1 определяют параметры, которые представляют в табличной форме (табл. 8).

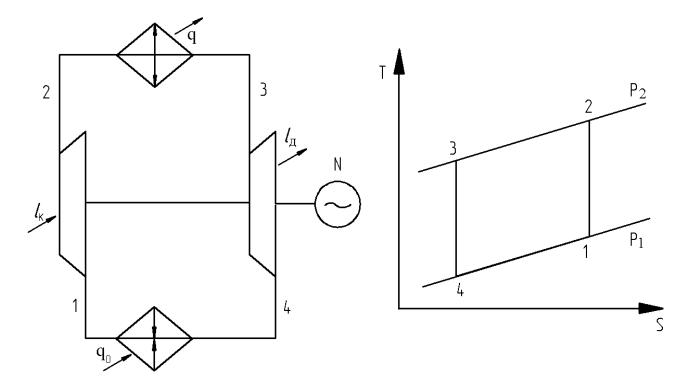


Рис. 5. Схема и цикл газовой холодильной машины

Результаты теплового расчета

Таблица 8

Результат Определяемая величина Формула $N_{\perp} = Q_{o}$ Мощность детандера, кВт $l_{\rm L} = \frac{\kappa}{\kappa - 1} RT_3 \left| 1 - \frac{\kappa}{\kappa - 1} \right|$ Удельная работа детандера, кДж/кг (к = 1,4; R = 0.286 кДж/кгРасход воздуха, кг/с $N_{K} = \frac{\kappa}{\kappa - 1} RT_{1} \left| \pi_{K} \right|^{\frac{\kappa}{\kappa}} - 1 \left| G \right|$ Мощность компрессора, кВт Мощность, затрачиваемая цикле $N=N_{_{\rm K}}-N_{_{\rm Д}}$ холодильной машины, кВт $\varepsilon = \frac{Q_0}{N}$ Холодильный коэффициент

Задача 5. Тепловой расчет поршневого компрессора паровой холодильной машины

Термодинамические параметры в узловых точках теоретического цикла холодильной машины должны быть рассчитаны в задаче 1 или задаче 2 и должны будут представлены в табл. 9.

Результаты расчета

Определяемая величина	Формула	Результат
1	2	3
Удельная массовая холодопроизводительность, кДж/кг	$q_0 = i_1 - i_4$	
Массовый расход рабочего вещества, кг/с	$G = \frac{Q_o}{q_o}$	
Действительная объемная производительность компрессора, м ³ /с	$V_{\text{II}} = G \cdot v_1$	
Относительное мертвое пространство	$C = 0.04 \div 0.05$	
Коэффициент подачи	$\lambda = 0, 7 \div 0, 8$	
Число цилиндров	$z = 2 \div 8$	
Теоретический объем, описываемый поршнями, ${ m m}^3/{ m c}$	$V_{T} = \frac{V_{II}}{\lambda}$ $K_{i} = 16 \div 45$	
Параметр удельных сил инерции	$K_i = 16 \div 45$	
Диаметр цилиндра, м	$ \Pi = 1,55 \left[\frac{V_T}{K_i^{0,5} z} \right]^{0,44} $ $ \varphi = \frac{S}{\Pi} = 0,6 \div 0,8 $ $ S = \varphi \cdot \Pi $	
Коэффициент $oldsymbol{arphi}$	$\varphi = \frac{S}{II} = 0,6 \div 0,8$	
Ход поршня, м	$S = \varphi \cdot \mathcal{A}$	
Частота вращения вала компрессора, с ⁻¹	$n = \left[\frac{K_i}{3, 6 \cdot S^{1,5}}\right]^{0,5}$	
Средняя скорость поршня, м/с	$C_{\mathbf{m}} = 2 \cdot \mathbf{S} \cdot \mathbf{n}$	
Теоретический объем, описываемый поршнями при принятых Д и S, м 3 /с	$\mathbf{V}_{\mathrm{T}} = \left(\frac{\pi \mathbf{\Xi}^2}{4}\right) \cdot \mathbf{S} \cdot \mathbf{n} \cdot \mathbf{z}$	
Удельная адиабатная работа компрессора, кДж/кг	$l_{\rm s} = i_2 - i_1$	
Адиабатная мощность компрессора, кВт	$N_s = G \cdot l_s$	
Индикаторный КПД компрессора	$\eta_i = 0, 7 \div 0, 8$	
Индикаторная мощность компрессора, кВт	$N_i = \frac{N_s}{\eta_i}$	
Давление трения, кПа	$P_i = 40 \div 50$	
Мощность трения, кВт	$N_{Tp} = P_i V_T$	
Эффективная мощность, кВт	$N_e = N_i + N_{Tp}$	
Эффективный холодильный коэффициент	$\varepsilon = \frac{Q_o}{N_e}$	

Задача 6. Расчет винтового компрессора

Исходные данные

Действительная объёмная производительность компрессора	V_g , ${ m M}^3/{ m c}$	0,5
Степень повышения давления	$\pi_{_{ m K}}$	5
Температура воздуха на входе	Т ₁ , к	303
Начальное давление	Р ₁ , МПа	0,1
Постоянная величина вредного пространства	c, %	1-5
Потери давления:		
на всасывание	ΔP_{BC} , МПа	0,005
на нагнетание	$\Delta P_{ m H}$, МПа	0,01

1. Теоретическая объемная производительность компрессора м³/с:

$$V_{\rm T} = \frac{V_{\rm g}}{\lambda} = \frac{0.5}{0.8} = 0.62 \text{ m}^3/\text{c},$$

где $\lambda = 0,8 \div 0,9$ – коэффициент подачи маслозаполненного винтового компрессора. Принимаем $\lambda = 0,8$ [1].

2. Изоэнтропийная мощность компрессора, кВт:

$$N_{S} = V_{g} \rho \frac{k}{k-1} RT_{1} (\pi_{k}^{\frac{k-1}{k}} - 1);$$
 $N_{S} = 114 \text{ kBt.}$

3. Эффективная мощность, кВт:

$$N_e = \frac{N_S}{\eta_e} = \frac{114}{0.65} = 175.4 \text{ kBt},$$

где $\eta_e = 0,65 \div 0,7$ – эффективный КПД. Принимаем $\eta_e = 0,65$.

По эффективной мощности с учётом запаса $5 \div 10 \%$ подбирают электродвигатель.

4. Предварительное значение внешнего диаметра винтов, м:

где $k_u=0,97$ — коэффициент использования объёма парной полости; $k_l=\frac{\iota_b}{\mathcal{I}_1}$, ($k_l=1\div 1,35$) — относительная длина винтов; $k_f=0,1184$ — коэффициент площади парной полости (коэффициенты взяты из типоразмерного ряда винтовых компрессоров); $z_1=4$ — число зубьев ведущего винта; $u_1=40$ м/с — окружная скорость на внешней окружности винта [1].

5. Частота вращения, c^{-1} :

$$n_1 = \frac{u_1}{(\pi \cdot \Pi_1)} = \frac{40}{(3,14 \cdot 0,325)} = 39 \text{ c}^{-1}.$$

6. Длина винта, м:

$$l_{\rm b} = k_1 \cdot \Pi_1 = 1,35 \cdot 0,325 = 0,44 \text{ M}.$$

7. Передаточное число при $z_2 = 6$ будет:

$$i_{12} = \frac{z_2}{z_1} = \frac{6}{4} = 1,5.$$

8. Межосевое расстояние, м:

$$A = 0.8 \cdot Д_1 = 0.8 \cdot 0.325 = 0.26$$
 м.

9. Диаметры начальных окружностей, м:

$$d_{1H} = \frac{2A}{1 + i_{12}} = \frac{2 \cdot 0,26}{2,5} = 0,208 \text{ M}.$$

$$d_{2_{\mathrm{H}}} = i_{12} \cdot d_{1_{\mathrm{H}}} = 1,5 \cdot 0,208 = 0,312$$
 m.

10. Диаметры окружностей впадин винтов, м:

$$d_{1_{RII}} = d_{2_{RII}} = 0.6 \Pi_1 = 0.195$$
 M.

11. Высота головки зуба, м:

$$a = 0.18Д_1 = 0.058$$
 м.

12. Высота ножки зуба, м:

$$r_0 = 0.02 \Pi_1 = 0.0065 \text{ M}.$$

13. Ход винтовой линии, м:

$$h_1 = 1,6Д_1; h_1 = 0,52$$
 м.

$$h_2 = i_{12}h_1; h_2 = 0,78 \text{ M}.$$

Задача 7. Расчет центробежного компрессора. Определение основных размеров

Исходные данные

Холодопроизводительность	$\mathbf{Q}_{\mathbf{O}}$, к \mathbf{B} т	100
Температура:		
кипения	То, к	258
конденсации	Т, К	303
Рабочее вещество		R717

1. Коэффициент изменения объёма:

$$k_v = \frac{v_1}{v_2} = \frac{0.5}{0.14} = 3.57.$$

- 2. Выбираем угол выхода лопаток $\beta_{\pi 2} = 45$ °; коэффициент политропного КПД $\eta_{\pi 0 \pi} = 0.82$ [1].
 - 3. Изоэнтропа процесса сжатия:

$$k = \frac{ln\pi_k}{lnk_v} = \frac{ln4.8}{ln3.57} = 1.2.$$

4. Значение числа изоэнтропы:

$$\sigma = \frac{k}{(k-1)} = \frac{1,2}{0,2} = 6.$$

5. Адиабатный КПД:

$$\eta_S = \frac{(\pi_k^{-1/\sigma} - 1)}{(\pi_k^{-1/\sigma\eta_{\Pi O \Pi}} - 1)} = \frac{(\pi_k^{-1/6} - 1)}{(\pi_k^{-1/(6 \cdot 0,82)} - 1)} = 0.81.$$

6. Удельная работа при политропном сжатии, кДж/кг:

$$l = \frac{l_{\rm S}}{\eta_{\rm S}} = \frac{220}{0.81} = 272$$
 кДж/кг.

7. Энтальпия в конце политропного сжатия, кДж/кг:

$$i_k = i_1 + l = 1670 + 272 = 1942$$
 кДж/кг.

8. Внутренняя мощность компрессора, кВт:

$$N_i = G \cdot l = 0.089 \cdot 272 = 24.2 \text{ kBt.}$$

9. Холодильный коэффициент:

$$\varepsilon = \frac{Q_o}{N_i} = \frac{100}{24,2} = 4,13.$$

- 10. Условное число $M_u = 1,1$ (принято) [1].
- 11. Скорость звука на входе в колесо, м/с:

$$a_{\rm H} = \sqrt{\kappa \cdot P_1 \cdot V_1} = \sqrt{1,3 \cdot 0,25 \cdot 10^6 \cdot 0,5} = 403 \, \text{m/c},$$

где $\kappa - 1,3$ коэффициент адиабаты аммиака.

12. Окружная скорость, м/с:

$$U_2 = M_u \cdot a_H = 1, 1 \cdot 403 = 443 \text{ m/c}.$$

Из условий прочности для алюминиевых колес $U_2 \le 300 \div 350\,\text{м/c}$, для титановых $U_2 \le 450\,\text{m/c}$ [1].

- 13. Для колеса первой ступени принимаем коэффициент расхода $\varphi_{2r}=0,24$, число лопаток $z_2=24$, поправку на дисковое трение $\left(1+\beta_{\Pi p}+\beta_{T p}\right)=1,045$. Коэффициент теоретической работы колеса $\varphi_{2u}=0,67$.
 - 14. Коэффициент мощности:

$$\chi = (1 + \beta_{\pi p} + \beta_{Tp}) \cdot \varphi_{2u} = 1,045 \cdot 0,67 = 0,7.$$

15. Число ступеней сжатия:

$$z_{cT} = \frac{\left(i_{K} - i_{1}\right) \cdot 1000}{\left(\chi \cdot U_{2}^{2}\right)} = \frac{\left(1942 - 1670\right) \cdot 10^{3}}{\left(0, 7 \cdot 403^{2}\right)} = 2,4.$$

Округляем до большего значения $z_{cr} = 3$.

16. Уточненное значение окружной скорости, м/с:

$$U_2 = \sqrt{\frac{\left(i_k - i_1\right) \cdot 10^3}{\left(z_{cT} \cdot \chi\right)}} = \sqrt{\frac{\left(1942 - 1670\right) \cdot 10^3}{\left(3 \cdot 0, 7\right)}} = 360 \text{ m/c}.$$

17. Число
$$M_u = \frac{U_2}{a_H}$$
; $M_u = \frac{360}{403} = 0.89$.

- 18. Относительная ширина лопатки $\overline{b} = \frac{b_2}{\mu_2}$; $\overline{b} = 0.075...0.045$.
- 19. Коэффициент стеснения лопатки $\tau_2 = 0.91$.
- 20. Диаметр колеса, м²:

$$b_2 = \overline{b}_2 \cdot Д_2 = 0.05 \cdot 0.26 = 0.013$$
 м.

21. Частота вращения:

$$n = \frac{u_2}{(\pi \cdot \Pi_2)} = \frac{300}{(3,14 \cdot 0,26)} = 441 \text{ c}^{-1}.$$

Задача 8. Расчет аммиачного кожухотрубного конденсатора

Теплофизические свойства веществ представлены в прил. 1. Кожухотрубный конденсатор выполнен из стальных труб диаметром 20 х 3,0 мм, $\lambda_c=45~\frac{BT}{M\cdot K}$. Среднее число труб по высоте

n=4. В межтрубном пространстве конденсируется холодильный агент, а внутри труб движется охлаждающая вода. Тепловая нагрузка и температура конденсации принимается по задаче 1 и записывается в табл. 10.

Таблица 10

Результаты	расчета
------------	---------

Определяемая величина	Формула	Результат
-----------------------	---------	-----------

1	2	3
Температура воды на выходе из конденсатора, °C	$t_{w2} = t - \Delta t_1$	
Разность температур, °C	$\Delta t_1 = 3 \div 4$	
Температура воды на входе, °С	$t_{w1} = t_{w2} - \Delta t_2$	
Нагрев воды, °С	$\Delta t_2 = 5 \div 6$	
Средняя логарифмическая разность температур, °C	$Q_{m} = \frac{t_{w1} - t_{w2}}{l n \frac{t - t_{w1}}{t - t_{w2}}}$	
Скорость движения воды в трубах, м/с	$W = 1 \div 1,5$	
Критерий Рейнольдса Re (теплофизические свойства воды принимаются при средней температуре воды)	$Re = \frac{wd_{BH}}{v}$	
Критерий Нуссельта	$Nu = 0.021 Re^{0.8} Pr^{0.43}$	
Коэффициент теплоотдачи от стенки трубы к воде, Вт/мК	$\alpha_{\rm W} = \frac{\rm Nu \cdot \lambda}{\rm d_{\rm BH}}$	
Термическое сопротивление стенки трубы, $\frac{\text{M}^2 \cdot \text{K}}{\text{Bt}}$	$R_{T} = \frac{\delta_{T}}{\lambda_{c}}$	
Коэффициент А	$R_{T} = \frac{\delta_{T}}{\lambda_{c}}$ $A = \frac{1}{\frac{1}{\alpha_{W}} + R_{T}}$	

Окончание табл. 10

1	2	3
Плотность теплового потока к воде, как функцию $q_W = f\left(t_{cT}\right)$ температуры стенки t_{cT} при средней температуре воды, B_T/m^2	$q_{w} = A(t_{cT} - t_{wcp})$	
Коэффициент В	$B = 0,725 \cdot 4 \sqrt{\frac{r\rho^2 \lambda^3 g}{\mu d_H}}$ Результат	· n ^{-0,167}
Плотность теплового потока от рабочего тела	0.77	
$q_a = f(t_{cT}), B_T/M^2$	$q_a = B(t - t_{cT})^{0.75}$	
Действительная плотность теплового потока определяется графическим решением системы уравнений	$\begin{cases} q_{w} = A(t_{cT} - t_{wcp}) \\ q_{a} = B(t - t_{cT})^{0.75} \end{cases}$	
	Результат	

Теплопередающая поверхность конденсатора, м ²	$F = \frac{Q}{q_F}$	
Длина трубок, м	$L = \frac{F}{\left(\pi d_{BH}\right)}$	
Точка пересечения прямой $q_W = f\left(t_{CT}\right)$ и кривой $q_a = f\left(t_{CT}\right)$ дает действительнуюплотность теплового потока q_F , $B_{T/M}^2$	$q_{\scriptscriptstyle F}$ $q_{\scriptscriptstyle B}$ $q_{\scriptscriptstyle B}$	
Расход воды, кг/с	$G_{w} = \frac{Q}{\left(c_{p} \cdot \Delta t_{w}\right)}$	
Число трубок	$n_1 = \frac{4G_w}{\pi d_{BH}^2 \omega \rho_w}$	
Конструктивная длина аппарата при числе заходов $z=4\div 6$, м	$l = \frac{F}{\pi d_{BH} z}$	

Задача 9. Расчет аммиачного кожухотрубного испарителя

Испаритель выполнен из стальных труб диаметром 20×3.0 мм. В межтрубном пространстве кипит аммиак, а внутри труб движется водный раствор хлористого кальция. Скорость движения рассола $\omega = 1 - 1.5$ м/с. Результаты записать в табл. 11.

Результаты расчета

Таблица 11

Определяемая величина	Формула	Результат
1	2	3
Температура рассола на входе в испаритель, °С	$t_{s1} = t_o + (5 \div 6)$	
Температура рассола на выходе, °С	$t_{s2} = t_{s1} + \left(3 \div 4\right)$	
Средняя логарифмическая разность температур, °C	$\Theta_{\rm m} = \frac{t_{\rm s1} - t_{\rm s2}}{l n \frac{t_{\rm s1} - t_{\rm o}}{t_{\rm s2} - t_{\rm o}}}$	
Критерий Нуссельта	$Nu = 0.021 Re^{0.8} Pr^{0.43}$	
Критерий Рейнольдса Re (теплофизические свойства рассола определяются при средней температуре рассола, которая должна быть выше температуры замерзания рассола t ₃)	$Re = \frac{wd_{BH}}{v}$	

Коэффициент теплоотдачи от рассола к стенке трубы, $\frac{B_T}{\text{M}^2 \cdot \text{K}}$	$\alpha_{S} = Nu \cdot \frac{\lambda}{d_{BH}}$	
Термическое сопротивление стенки трубы, $\frac{{\color{blue} {\rm M}}^2\cdot {\rm K}}{{\rm B}{\rm T}}$	$R_{T} = \frac{\delta_{T}}{\lambda_{c}}$	
Коэффициент А	$A = \frac{1}{\frac{1}{\alpha_{S}} + R_{T}}$	
Плотность теплового потока к рассолу, как функция температуры стенки \mathbf{t}_{CT} при средней температуре рассола, Bt/m^2	$q_{s} = A(t_{scp} - t_{ct})$	

Окончание табл. 11

1	2	3
Плотность теплового потока от стенки к рабочему телу, $B T/M^2$	$\alpha_{\rm a} = 580(t_{\rm am} - t_{\rm a})^{1,007}$	
Действительная плотность теплового потока определяется графическим решением системы уравнений $q_F,B_T/m^2$	$\begin{cases} q_{a} = 866(t_{CT} - t_{O}) \\ q_{s} = A(t_{scp} - t_{cT}) \\ q_{a} = 580(t_{CT} - t_{O})^{1,667} \end{cases}$	
Теплопередающая поверхность испарителя, м ²	$F = \frac{Q_o}{q_F}$	
Длина трубок, м	$L = \frac{F}{\left(\pi d_{BH}\right)}$	
Расход теплоносителя, кг/с	$G_{s} = \frac{Q_{o}}{\left(c_{p} \cdot \Delta t_{s}\right)}$	
Число трубок	$n = \frac{4G_s}{\pi d_{BH}^2 \omega \rho}$	
Конструктивная длина аппарата при числе заходов $z = 4 \div 6$, м	$l = \frac{F}{\pi d_{BH} z}$	

Задача 10. Расчёт брызгального бассейна

Общая тепловая нагрузка $Q=3\,$ МВт. Расчётные температуры и влажность наружного воздуха г. Омска $\phi_H=60\,$ %, $t_H=31\,$ °C.

1. По диаграмме влажного воздуха при i = const определяем температуру мокрого термометра $t_{\rm M} = 14,5$ °C.

- 2. Задаёмся теплоперепадом при охлаждении воды $\Delta t_{\mathrm{W}} = 2 \div 5$ °C; коэффициентом эффективности брызгального бассейна $\eta = 0, 3 \div 0, 45$.
 - 3. Температура воды, поступающей в брызгальный бассейн:

$$t_{W_2} = t_M + \frac{\Delta t_M}{\eta} = 19,5 + \frac{4}{0,4} = 29,5 \text{ °C}.$$

4. Температура на выходе:

$$t_{W_1} = t_{W_2} - \Delta t_W = 29,5 - 4 = 25,5 \text{ }^{\circ}\text{C}.$$

5. Гидравлическая нагрузка:

$$W = \frac{Q}{(c_w \cdot \rho_w \cdot \Delta t_w)} = \frac{3000}{(4,19 \cdot 998 \cdot 4)} = 0,179 \text{ m}^3/\text{c}.$$

6. Площадь поперечного сечения:

$$F_o = \frac{Q}{q_E} = \frac{3000}{4,4} = 682 \text{ m}^2,$$

где $q_F=1,8 \div 4,7\,$ кВт/м² – удельная тепловая нагрузка.

7. Удельная гидравлическая нагрузка:

$$H_W = \frac{W}{F_0} = \frac{0.179}{682} = 2.6 \cdot 10^{-4} \text{ m}^3/\text{m}^2.$$

Рекомендуемая удельная нагрузка: $H_{w} = 2 \cdot 10^{-4} \div 3 \cdot 10^{-4} \text{ м}^{3}/\text{m}^{2}$.

- 8. В качестве разбрызгивающих сопел принимаем сопла размером 50/25 мм.
- 9. Напор перед соплом 5 м вод. ст. при производительности сопел $q_{\mathrm{W}} = 5,19 \cdot 10^{-3}$ м/с.
- 10. Количество сопел:

$$n = \frac{W}{q_w} = \frac{0.179}{5.19 \cdot 10^{-3}} = 34.$$

Сопла располагаем в два ряда по 17 штук.

Типовые вопросы к экзамену в 4 семестре:

- 1. Введение. Назначение трансформаторов тепла.
- 2. Область использования трансформаторов тепла.
- 3. Классификация трансформаторов тепла.
- 4. Циклические, квазициклические и нециклические процессы в трансформаторах тепла.
- 5. Эксергетический метод анализа систем трансформации тепла. Определение значения эксергии.
- 6. Основные термодинамические зависимости.
- 7. Хладоносители.
- 8. Назначение и классификация нагнетательных и расширительных машин.
- 9. Термогазодинамические основы процессов сжатия и расширения.
- 10. Компрессоры объемного действия.
- 11. Компрессоры кинетического действия (турбокомпрессоры).
- 12. Поршневые детандеры.
- 13. Турбодетандеры. Насосы.
- 14. Удельные энергозатраты и КПД компрессионных трансформаторов тепла.
- 15. Энергетический и эксергетический балансы компрессионных трансформаторов тепла.
- 16. Методика расчета одноступенчатых трансформаторов тепла.
- 17. Применение двухступенчатых теплонасосных установок в системах теплоснабжения.
- 18. Основные методы регулирования компрессионных трансформаторов тепла. Условия установившегося режима.
- 19. Характеристики основных элементов трансформатора тепла.
- 20. Принцип действия идеальных абсорбционных установок и удельный расход тепла в них.
- 21. Абсорбционно-диффузионные холодильные установки.
- 22. Энергетическое сравнение абсорбционных и компрессионных холодильных установок.
- 23. Типы струйных трансформаторов тепла.
- 24. Принципиальная схема и КПД струйного компрессора.
- 25. Расчет геометрических размеров струйных компрессоров.
- 26. Характеристики струйного компрессора.
- 27. Принципиальная схема вихревой трубы и процесс ее работы.
- 28. Принципиальная схема и КПД пароэжекторных холодильных установок.
- 29. Особенности газожидкостных трансформаторов тепла.
- 30. Низкотемпературная тепловая изоляция.
- 31. Особенности процессов в газовых трансформаторах тепла.
- 32. Идеальные газовые циклы со стационарными процессами.
- 33. Реальные газовые циклы и квазициклы со стационарными процессами.
- 34. Особенности и классификация электрических и магнитных трансформаторов тепла.
- 35. Физические основы работы термоэлектрических и термомагнитных трансформаторов тепла.
- 36. Термоэлектрические и термомагнитоэлектрические трансформаторы тепла.