Документ подпис по владельце:
ФИО: Косенок Сергей Михайлович
Должность: ректор
Дата подписания: 21.10.2025 14:49:47
Уникальнык оддуналравление
еза6873 гадоб 74 56 км 8809903 d6bfdcf836

Направленность (профиль)
Форма обучения
Кафедра-разработчик
Радиоэлектроники и электроэнергетики

Выпускающая кафедра
Радиоэлектроники и электроэнергетики

Типовые задания для контрольной работы

Задание 1

Размеры плоского пластинчатого нагревателя H·L (ширина и длина) (таблица 1), сопротивление теплопотерям $r=0,13\text{m}^2\cdot\text{K/BT}$, коэффициент теплопередачи a=0,85. Коэффициент пропускания стеклянной крышки $\tau=0,9$. Коэффициент поглощения пластины $\alpha_{\pi}=0,9$. Температура входящей в приёмник жидкости T_2 . Температура окружающего воздуха T_1 , поток лучистой энергии G, Bt/m^2 , теплоёмкость воды, c=4200, Дж/(кг·°C). Температура выходящей жидкости T_3 . Определить скорость прокачки, которая необходима для повышения температуры на t градусов. Насос работает и ночью, когда G=0. Как будет снижаться температура воды за каждый проход через приёмник (T_3 , T_2). Необходимо учитывать среднюю температуру проходящей жидкости t_{cp} .

Таблица 1

		Варианты														
Величина	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Н,м	2	2,5	2	2,5	2	2,5	2	2,5	2	2,5	2	2,5	2	2,5	2	
L,м	0,8	0,7	0,9	1,0	0,7	0,8	0,9	1,0	1,1	1,2	0,7	0,8	0,9	1,0	1,1	
G.B _T / _M ²	750	650	600	600	650	750	700	600	650	700	750	700	650	700	750	
T₁, °C	20	15	10	5	20	15	10	5	20	15	10	5	20	15	10	
T ₂ , °C	40	45	35	40	35	45	35	40	45	35	40	50	50	40	40	
t, °C.	4	5	5	4	5	5	5	4	5	5	4	4	4	4	4	

Задание 2

Приёмник расположен на теплоизоляторе с коэффициентом теплопроводности λ , $Bt/m\cdot K$, (табл.8), удельное термическое сопротивление поверхности приёмника r=0,13 м²·К/Вт. Определить какой толщины требуется изоляция, чтобы обеспечить термическое сопротивление дна, равное сопротивлению поверхности.

Таблица 2

Величина		Варианты													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
λ, Вт/м·К	0,034	0,04	0,05	0,06	0,07	0,08	0,09	0,15	0,1	0,12	0,13	0,14	0,05	0,06	0,04

Задание 3

Определить начальную температуру t_2 и количество геотермальной энергии E_0 (Дж) водоносного пласта толщиной h км при глубине залегания z км, если заданы характеристики породы пласта: плотность $\rho_{rp}=2700$ кг/м³; пористость а %; удельная теплоёмкость $c_{rp}=840$ Дж/(кг· K). Температурный градиент (dT/dz) °C/км. Среднюю температуру поверхности t_0 принять равной 10°C. Удельная теплоёмкость воды $c_B=4200$ Дж/(кг· K); плотность воды $\rho=1\cdot 10^3$ кг/м³. Расчёт произвести по отношению к плоскости поверхности F км². Минимально допустимую температуру пласта принять равной $t_1=40$ °C. Площадь F=1км².

Определить постоянную времени извлечения тепловой энергии τ_0 (лет) при закачивании воды в пласт и расходе её V= m^3 /(с κm^2). Какова будет тепловая мощность, извлекаемая первоначально $(dE/d\tau)_{\tau=0}$ и через 10 лет?

Таблица 3

Параметры	Варианты														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
h, км	0,8	0,9	1,0	1,1	1,2	1,3	1,4	1,5	0,8	1,0	1,2	1,3	1,5	0,9	1,1
Z, KM	3,5	3,0	4,0	2,0	3,0	4,0	2,0	3,0	4,0	2,0	2,0	3,0	4,0	5,0	4,0
a, %	5	4	5	6	7	4	5	6	7	4	5	6	7	4	5
dT/dz°c/км	65	70	75	80	60	65	70	75	80	85	90	70	80	75	80
$V,$ $M^3/(c \cdot KM^2)$	1	1,2	1,1	1,3	1,4	1,5	1,4	1,3	1,2	1	1,4	1,5	1,1	1,2	1,3

Задание 4

Радиус ветроколеса R, м, скорость ветра до колеса V_0 , м/с, после колеса V_2 , м/с (табл.4). Определить: скорость ветра в плоскости ветроколеса V_1 , мощность ветрового потока P_0 , мощность ветроустановки P и силу F, действующую на ветроколесо. Плотность воздуха $\rho = 1,2$ кг/м 3 .

Таблица 4

Величина	Варианты.														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R,м	4	6	8	10	12	15	20	25	30	35	40	45	50	7,5	12,5
Vo,м/c	10	11	12	13	14	15	6	7	8	9	10	11	12	9	10
V ₂ .,м/c	5	6	4	8	7	8	3	3	3	4	5	6	6	5	4

Типовые вопросы к зачету

- 1. Перечислите технологии автономного теплоснабжения потребителей.
- 2. Принципиальная схема мини котельной.
- 3. Принципиальная схема мини теплоэлектроцентрали.
- 4. Микротурбинные установки.
- 5. Теплообменники в системах автономного теплоснабжения и утилизации вторичного тепла.
- 6. Когенерация энергии.
- 7. Тригенерация энергии.
- 8. Каковы физические принципы преобразования энергии солнечного излучения в электрическую энергию?
- 9. Вольтамперная характеристика солнечного элемента.
- 10. Перечислите основные элементы систем солнечного теплоснабжения.
- 11. Устройство гелиоприемника.
- 12. Устройство солнечного коллектора.
- 13. Устройство солнечного абсорбера.
- 14. Перечислите основные системы аккумулирования солнечной энергии.
- 15. Перечислите основные типы ветров.
- 16. Классификация ветродвигателей по принципу работы.
- 17. Дайте определение идеального ветряка.
- 18. В чем отличие идеального ветряка от реального?
- 19. Основные потери в ветряном двигателе.
- 20. Классификация геотермальных источников в зависимости от температуры.
- 21. Чем характеризуются геотермальные системы конвекционного происхождения?
- 22. Перечислите основные элементы геотермальной электростанции.
- 23. Перечислите основные элементы геотермальной системы теплоснабжения.
- 24. Принцип действия насосов и вентиляторов центробежного типа.
- 25. Принципиальная схема осевого насоса и вентилятора.
- 26. Устройство газогенератора.
- 27. Опишите процесс пиролиза.
- 28. Опишите процесс гидрогенизации.
- 29. Перечислите основные источники получения биотоплива.
- 30. Устройство биотэнка.