Информация о владельце:	алы для промежуточной аттестации по дисциплине опливо и основы горения (3 семестр)
Уникальн ь од гр направление e3a68f3ea a16546745BkW 8099d3d6bfdcf836	13.03.01 Теплоэнергетика и теплотехника
Направленность (профиль)	Теплоэнергетика и теплотехника
Форма обучения	Очная
Кафедра-разработчик	Радиоэлектроники и электроэнергетики
Выпускающая кафедра	Радиоэлектроники и электроэнергетики

Типовые задания для контрольной работы:

Задание № 1

Используя справочные данные для заданного вида твердого топлива (угля) определить состав его рабочей массы, если реальное значение его влажности составляет 0; 50; 100; 150; 200 % от табличного (заданного) значения. Результаты вычислений занести в таблицу 1.

Состав рабочей массы твёрдого топлива

Таблица 1

Состав	Искомый состав рабочей массы топлива						
топлива, %	0 %	50 %	100 %	150 %	200 %		
1	2	3	4	5	6		
W^{p}							
A^{p}							
$C^{\mathbf{p}}$							
\mathbf{H}^{p}							
\mathbf{S}^{p}							
N^p							
O_b							

Задание № 2

Для заданного вида газообразного топлива определить его состав, если его влагосодержание равно 0; 10; 20; 30; 40; 50; 60 г/м 3 . Результаты вычислений занести в таблицу 2.

Состав газообразного топлива

Состав топ-	Искомый состав газообразного топлива						
d_{z} , Γ/M^{3}	0	10	20	30	40	50	60
H ₂ O							
CH ₄							
C_2H_6							
C ₃ H ₈							
$C_{4}H_{10}$ $C_{5}H_{12}$							
C ₅ H ₁₂							
N ₂							
CO ₂							

Задание № 3

Используя справочные данные для заданного вида твердого топлива (угля) определить низшую рабочую теплоту сгорания, если реальное значение его влажности равно 0; 50; 100; 150; 200 % от справочного (табличного) значения. Результаты вычислений занести в таблицу 3.

Построить график зависимости $Q_p = f(W_p)$.

Теплота сгорания твёрдого топлива

T	аблица	3

Доля влаги	0 %	50 %	100 %	150 %	200 %
W^{p} , %					
Q^{p} , кДж/кг					

Задание № 4

Для заданного вида газообразного топлива определить состав низшую рабочую теплоту сгорания, если его влагосодержание равно 0; 10; 20; 30; 40; 50; 60 г/м 3 . Результаты вычислений занести в таблицу 4.

Построить график зависимости $Q_{\mathsf{P}} = f(d)$.

Таблица 4

Теплота сг	орания газо	образного т	оплива

$d_{\mathcal{E}}$, Γ/M^3	0	10	20	30	40	50	60
$Q_H^{\rm p}$, кДж/м 3							

Типовые вопросы к зачету

- 1. Основные виды природных и искусственных топлив.
- 2. Укажите назначение и основные способы переработки твердого топлива перед его сжиганием.
- 3. Характеристики природных и искусственных горючих газов.
- 4. Подготовка природного газа перед подачей его в магистральный газопровод.
- 5. Элементарный состав твердого, жидкого и газообразного топлива.
- 6. Рабочая, сухая, горючая и органическая массы топлива.
- 7. Основные теплотехнические характеристики топлива.
- 8. Минеральные примеси топлива, их свойства.
- 9. Влияние влаги на свойства топлива.
- 10. Состав выделяющихся при термическом распаде газов.
- 11. Теплота сгорания топлива и способы ее определения.
- 12. Деление твердого топлива на бурые угли, каменные угли и антрациты.
- 13. Какие марки мазута применяют в качестве топлива в промышленных и отопительных котельных?
- 14. Уравнение полного горения.
- 15. Уравнение неполного горения.
- 16. Экзотермические и эндотермические реакции.
- 17. Классификация химических реакций.
- 18. Неразветвленная цепная реакция.
- 19. Разветвленная цепная реакция.
- 20. Реакция горения окиси углерода и метана.
- 21. Реакция горения метана.
- 22. Объясните зависимость химического равновесия от температуры.
- 23. Процесс диссоциации водяного пара и углекислоты.
- 24. Процесс смесеобразования и его роль в процессе горения.
- 25. Кинетическая, промежуточная и диффузионная область горения.
- 26. Основные положения стационарной теории самовоспламенения.
- 27. Концентрационные пределы зажигания и влияние на них давления и температуры, инертных и активных примесей.
- 28. Опишите процессы горения однородной газовой смеси.
- 29. Кинетические, диффузионный и смешанный принципы сжигания газа и области их применения.
- 30. Опишите особенности горения газа и структуру факела при ламинарном и турбулентном режиме движения.
- 31. Схемы газовых горелок, работающих по кинетическому, диффузионному и смешанному принципу.
- 32. Основные пути интенсификации сжигания газообразных топлив.
- 33. Процесс горения жидкого топлива на свободной поверхности.
- 34. Процесс горения капли жидкого топлива.
- 35. Основные принципы интенсификации сжигания жидких топлив.
- 36. Общая характеристика процесса горения частиц твердого топлива.
- 37. Основные принципы теории гетерогенного горения.
- 38. Опишите процесс химического реагирования углерода с кислородом.
- 39. Роль летучих в процессе горения твердого топлива.
- 40. Процесс термического разложения твердых топлив, состав и выход продуктов разложения.
- 41. Опишите процесс горения отдельной частицы угольной пыли.
- 42. Различия в протекании процесса горения мелких и крупных частиц.
- 43. Основные принципы интенсификации процесса горения твердого топлива в пылевидном состоянии.
- 44. Основные методы сжигания твердого топлива.