Документ подпионивленматериалы для текущего контроля и промежуточной

Информация о владельце:

ФИО: Косенок Сергей Михайлович

Должность: ректор

Дата подписания: 21.10.2025 14:49:47 Уникальный программный ключ:

e3a68f3eaa1e62674b54f4998099d3d6bfdcf836

Энергоаудит предприятий

аттестации по дисциплине

Код, направление подготовки	13.03.01 Теплоэнергетика и теплотехника
Направленность (профиль)	Теплоэнергетика и теплотехника
Форма обучения	Очная
Кафедра-разработчик	Радиоэлектроники и электроэнергетики
Выпускающая кафедра	Радиоэлектроники и электроэнергетики

Типовые задания для контрольной работы:

Влияние параметров пара на КПД энергоустановки и расход топлива

Исходными данными для выполнения работы являются давление p_0 и температура t_0 перегретого пара перед турбиной и давление P к в конденсаторе. Также задается вид топлива (табл. 1).

Таблица 1.

№ п/п	р ₀ , Мпа	t ₀ , °C	P_{κ} , кПа	топливо
1	10	600	0,5	природный газ
2	12	550	1,0	мазут
3	14	500	1,5	уголь каменный
4	16	450	2	уголь антрацит
5	18	400	2,5	дизельное топливо
6	20	450	3	природный газ
7	22	500	3,5	мазут
8	24	550	4	уголь каменный
9	10	600	4,5	уголь антрацит
10	12	650	5	дизельное топливо
11	14	600	0,5	природный газ
12	16	550	1,0	мазут
13	18	450	1,5	уголь каменный
14	20	400	2	уголь антрацит
15	22	450	2,5	дизельное топливо
16	24	500	3	природный газ
17	10	550	3,5	мазут
18	12	600	4	уголь каменный
19	14	650	4,5	уголь антрацит
20	16	450	5	дизельное топливо
21	18	500	0,5	природный газ
22	20	450	1,0	мазут
23	22	400	1,5	уголь каменный
24	24	450	2	уголь антрацит
25	10	500	2,5	дизельное топливо
		_		•

Определяемый по формуле кпд станции η_c содержит ряд составляющих, значения которых принимаются из следующих соображений.

Современные паровые котлы имеют кпд $\eta_{\kappa} = 0.90...0.95$. Потери теплоты в трубопроводе при движении пара от котла к турбине учитываются $\eta_{\text{тр}} = 0.98...0.99$.

Внутренний относительный КПД паровых турбин η_{oi} находится в пределах 0,86...0,88, механический КПД $\eta_{M} = 0,97...0,99$, а КПД генератора $\eta_{M} = 0,96...0,99$.

Задание:

- 1. Ознакомиться с инструкцией по технике безопасности и расписаться в журнале инструктажа.
 - 2. Изучить принципиальную схему ПТУ и процессы, происходящие в установке.
- 3. Изобразить в отчете упрощенную принципиальную схему ПТУ и цикл Ренкина в h-s диаграмме. Обозначить все характерные точки цикла.
 - 4. Определить термодинамические параметры в характерных точках цикла Ренкин.
 - 5. Определить кпд цикла Ренкина.
 - 6. Выбрать кпд элементов энергетической установки.
 - 7. Определить кпд энергетической установки.
 - 8. Определить удельный расход теплоты.
 - 9. Определить удельный расход топлива.
 - 10. Определить удельный расход условного топлива.
- 11. Произвести анализ зависимости термического кпд η t цикла Ренкина от параметров пара перед турбиной и от давления в конденсаторе.
 - 12. Построить зависимости η_t , q_c , b_c , $b_y = f(p_0)$; η_t , q_c , b_c , $b_y = f(t \ 0)$; η_t , q_c , b_c , $b_y = f(P_K)$,
- 13. Произвести анализ полученных зависимостей и сформулировать предложения по повышению энергоэффективности паротурбинной установки.

- 1. Определение энергоаудита. Цель энергоаудита. Предприятия, подлежащие энергоаудиту. Частота и порядок проведения энергоаудита, источники его финансирования и требования к организациям, проводящим энергоаудит.
 - 2. Сбор документальной информации (основные этапы и состав работ по этапам).
 - 3. Задачи энергоаудита и методы их решения
- 4. Инструментальное обследование при энергоаудите промпредприятия (общие положения, состав работ).
- 5. Основные понятия и определения энергоаудита: энергосбережение, показатель энергосбережения, показатель энергетической эффективности, показатель энергоемкости продукции, эффективное использования энергетических ресурсов.
- 6. Основные понятия и определения энергоаудита: энергетический ресурс, вторичный энергетический ресурс, энергоноситель, энергопотребляющая продукция, норматив расхода энергии, норма расхода энергетических ресурсов.
 - 7. Энергоаудит систем отопления.
 - 8. Энергоаудит систем топливоснабжения и систем воздухоснабжения.
 - 9. Энергоаудит высокотемпературных теплотехнологических установок.
- 10. Энергоаудит холодильных установок и систем водоснабжения промышленного предприятия.
 - 11. Энергоаудит промышленно-отопительных котельных.
- 12. Система энергоснабжения и энергетические процессы промышленного предприятия (состав и назначение).
- 13. Понятие энергетического паспорта промышленного предприятия. Структура расчетнопояснительной записки к энергетическому паспорту.
- 14. Характеристика схем совместного присоединения систем отопления и горячего водоснабжения и основные контролируемые параметры в этих системах при проведении инструментального обследования.
 - 15. Термодинамический метод оценки совершенства процессов.
- 16. Тепловой и материальный балансы высокотемпературной теплотехнологической установки.
 - 17. Тепловой и материальный балансы сушильной установки.
 - 18. Тепловой и материальный балансы котельной установки.
 - 19. Обработка и анализ информации, полученной при энергоаудите.
 - 20. Разработка рекомендаций по энергосбережению.
 - 21. Нормируемый удельный расход топлива и КПД нетто котельной установки.
- 22. Мероприятия по снижению удельного расхода топлива на вырабатываемую теплоту в котельных.
- 23. Энергосберегающие мероприятия в высокотемпературных теплотехнологических установках.
 - 24. Энергосберегающие мероприятия в холодильных установках.
 - 25. Энергосберегающие мероприятия в системах отопления и горячего водоснабжения.
 - 26. Энергосберегающие мероприятия в системах воздухо- и водоснабжения