Документ подпис Фценотеньценма пери Информация о владельце: ФИО: Косенок Сергей Михайлович Должность: ректор Дата подписания: 21.10.2025 14:49:47	алы для промежуточной аттестации по дисциплине Тепломассобмен (4 семестр)
Уникальн ь Код дур на правление e3a68f3ea a1 66 A 674b5 4 6498099d3d6bfdcf836	13.03.01 Теплоэнергетика и теплотехника
Направленность (профиль)	Теплоэнергетика и теплотехника
Форма обучения	Очная
Кафедра-разработчик	Радиоэлектроники и электроэнергетики
Выпускающая кафедра	Радиоэлектроники и электроэнергетики

Типовые задания для контрольной работы:

ЗАДАЧА №1

Теплота дымовых газов передается через стенку котла кипящей воде. Принимая температуру газов t_{f1} , воды t_{f2} , коэффициент теплоотдачи газами стенке α_1 и от стенки воде α_2 и считая стенку плоской, требуется

- 1. Рассчитать термические сопротивления R, коэффициенты теплопередачи, эквивалентные коэффициенты теплопроводности и количества передаваемой теплоты от газов к воде через 1 м² стенки за 1 с для следующих случаев:
 - а) стенка стальная, совершенно чистая, толщиной δ_2 ($\lambda_2 = 50 \, \text{Br/(M·K)}$);
 - б) стенка медная, совершенно чистая, толщиной δ_2 ($\lambda_2 = 50$ Bt/(м·К));
 - в) стенка стальная, со стороны воды покрыта слоем накипи толщиной δ_3 , ($\lambda_3 = 2$ Bt/(м·К));
 - г) случай «в», но поверх накипи имеется слой масла толщиной $\delta_4=1$ мм ($\lambda_4=0,1$ Bт/(м·К));
- д) случай «г», но стороны газов стенка покрыта слоем сажи толщиной δ_1 ($\lambda_1=0,2$ Вт/(м·К)).

Данные для расчета приведены в таблице 1.1.

- 2. Приняв количество теплоты для случая «а» за 100 %, рассчитать (в процентном соотношении) теплоту для всех остальных случаев.
 - 3. Определить аналитически температуры всех слоев стенки для случая «д».
 - 4. Проверить рассчитанные температуры графически.
 - 5. Построить для случая «д» линию изменения температуры в стенке.

Таблица 1.1

Варианты исходных данных

No	t_{f1} ,	t_{f2} ,	α_1 ,	α_2 ,	δ_1 ,	δ_2 ,	δ_3 ,
варианта	$^{\circ}\mathrm{C}$	$^{\circ}\mathrm{C}$	$BT/(M^2K)$	$BT/(M^2K)$	MM	MM	MM
1	1200	220	160	3500	1	16	10
2	1100	200	150	3000	2	14	5
3	1000	180	140	2500	1	12	4
4	900	160	130	2000	2	10	3
5	800	140	120	1500	1	8	2
6	850	150	60	1000	2	12	10
7	950	160	70	2000	1	14	9
8	1050	170	80	3000	2	16	8

9	1150	180	90	4000	1	18	7
10	1250	190	100	5000	2	20	6
11	1200	220	100	4500	1	16	10,5
12	1100	200	90	4000	2	14	6,5
13	1000	180	80	3000	1	12	3,2
14	900	160	70	2000	2	10	14,3
15	800	140	60	1000	1	8	3,5
16	850	150	120	1500	2	12	8,7
17	950	160	130	2000	1	14	6,8
18	1050	170	140	2500	2	16	7,6
19	1150	180	150	3000	1	18	11,2
20	1250	190	160	3500	2	20	12,4

ЗАДАЧА №2

Рассчитать стационарное температурное поле осесимметричной многослойной цилиндрической стенки (рисунок 1.1), в слоях которой равно- мерно распределены внутренние источники теплоты удельной мощностью $q_{\mathcal{V}}$, определить тепловые потоки при $r=r_2$ и $r=r_3$, а также построить график изменения температуры по толщине стенки.

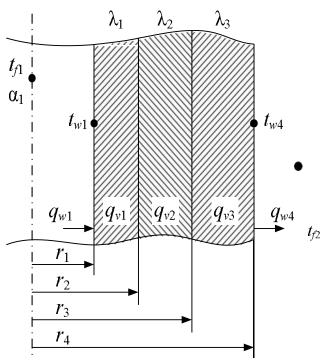


Рисунок 1.1 - Расчетная схема многослойной цилиндрической стенки с внутренними источниками теплоты

Геометрические размеры $r_1,\ r_2,\ r_3,\ r_4$, коэффициенты теплопроводности материалов $\lambda_1,\ \lambda_2$, λ_3 , расположение тепловыделяющего слоя а также параметры соответствующие граничным условиям температуры стенок t_W , температуры теплоносителей t_f , плотности тепловых потоков q_W , мощности внутренних источников теплоты q_V , коэффициенты теплоотдачи α приведены в таблицах исходных данных (см. таблицы 2.1 и 2.1). Индексы «1», «2», «3» при λ и q_V относятся соответственно к 1, 2, 3-му цилиндрическим слоям.

№ варианта	t_{w1} , °C	q_{w1} , Вт/м	$lpha_1$, $B_T/({ m M}^2{ m K})$	t_{f1} , °C	<i>t</i> _w ₄ , °C	q_{w4} , Вт/м	α_2 ,	t_{f2} , °C
Dupituitiu		D1/M	D17(M-K)		-C	D1/M	Вт/(м ² К)	-C
1	200	-	-	-	50	-	-	-
2	-	-	50	80	-	-	120	20
3	-	5·10 ⁴	-	-	50	-	-	-
4	200	-	-	-	-	5.10^{3}	-	-
5	200	-	-	-	-	-	50	20
6	-	-	100	80	50	ı	-	-
7	-	$12 \cdot 10^3$	-	-	-	-	100	20
8	-	-	100	80	-	8.10^{3}	-	-
9	600	-	-	-	200	-	-	-
10	-	-	2000	350	-	=	100	80
11	200	-	-	-	50	-	-	-
12	-	-	50	80	-	-	120	20
13	-	1.104	-	-	50	-	-	-
14	200	-	-	-	-	$7 \cdot 10^3$	-	-
15	200	-	-	-	-	=	50	20
16	-	-	100	80	50	-	-	-
17	-	$3,5\cdot 10^3$	-	-	-	-	100	20
18	-	-	100	80	-	3·10 ³	-	-
19	600	-	=	-	200	-	=	-
20	-	-	2000	350	-	=	100	80

Таблица 2.2

Геометрические и теплофизические параметры стенки

	1 COMC	тричесь	KHC H IC	плофиз	ически	с пара	мстры	СТСПКИ		
№ варианта	q_{v1}	q_{v2}	q_{v3}	r_1	r_2	r3	<i>r</i> ₄	λ_1	λ_2	λ3
варианта	MB _T / _M ³			MM				$BT/(M \cdot K)$		
1 10	10	0	0	20	28	38	40	15	3	80
11 20	0	10	0	20	22	30	40	80	15	3

ЗАДАЧА №3

Внутри стального трубопровода с наложенной на него тепловой изоляцией (рисунок 3.1) движется теплоноситель с температурой $t_{f\,1}$, снаружи окружающая среда с температурой $t_{f\,2}$. Геометрические размеры трубопровода, параметры теплоносителя, среды и материала трубы приведены в таблице 3.1.

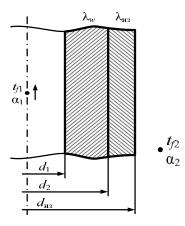


Рисунок 3.1 - Схема цилиндрической стенки с тепловой изоляции

Требуется:

- 1. Определить, выполняет ли свою роль тепловая изоляция;
- 2. Исследовать влияние толщины слоя тепловой изоляции на термическое сопротивление и линейную плотность теплового потока для выбранного типа изоляции;
- 3. Выбрать тип тепловой изоляции, выполняющей свою роль на основании таблицы 3.2.

Таблица 3.1

Варианты исходных данных

1				- T	годиых даг				
$\mathcal{N}_{\underline{0}}$	d_1	d_2 ,	d_{M3} ,	α_1 ,	α_2 ,	tf1,	tf2,	λ_W ,	λ_{M3} ,
варианта	,	MM	MM	$BT/(M^2K)$	$BT/(M^2K)$	o _C	oС	$BT/(M \cdot K)$	$B_T/(M \cdot K)$
	MM						_		
1	18	20	36	100	12	80	-20	20	0,17
2	18	20	36	100	12	80	-15	20	0,17
3	18	20	36	100	12	80	-10	20	0,17
4	18	20	36	100	12	80	-5	20	0,17
5	18	20	36	100	12	80	0	20	0,17
6	20	22	38	112	8	90	5	22	0,14
7	20	22	38	112	8	90	10	22	0,14
8	20	22	38	112	8	90	15	22	0,14
9	20	22	38	112	8	90	20	22	0,14
10	20	22	38	112	8	90	15	22	0,14
11	22	24	40	120	10	80	-20	25	0,15
12	22	24	40	120	10	80	-15	25	0,15
13	22	24	40	120	10	80	-10	25	0,15
14	22	24	40	120	10	80	-5	25	0,15
15	22	24	40	120	10	80	0	25	0,15
16	24	26	45	150	15	90	5	50	0,16
17	24	26	45	150	15	90	10	50	0,16
18	24	26	45	150	15	90	15	50	0,16
19	24	26	45	150	15	90	20	50	0,16
20	24	26	45	150	15	90	15	50	0,16

Таблица 3.2 Коэффициент теплопроводности изоляционных материалов

Материал	Асбест	Альфоль	Шлаковая вата	Пробка	Перлит	Войлок
λ _{ИЗ} , Вт/(м К)	0,107	0,054	0,059	0,047	0,056	0,052

Типовые вопросы к экзамену

- 1. Основные положения теплообмена при конденсации чистых паров.
- 2. Теплоотдача при пленочной конденсации неподвижного пара.
- 3. Теплоотдача при конденсации движущегося пара на поверхности трубы и пучков труб.
- 4. Структура двухфазного потока при кипении жидкости.
- 5. Механизм процесса теплообмена при пузырьковом кипении жидкости.
- 6. Теплоотдача при кипении жидкости.
- 7. Основные положения лучистого теплообмена.
- 8. Основные законы теплового излучения.
- 9. Теплообмен излучением в системе двух тел, одно из которых находится в полости другого.
- 10. Теплообмен излучением между телами, произвольно расположенными в пространстве.
- 11. Излучение газов и паров. Закон Бугера.
- 12. Определение степени черноты водяного пара и углекислого газа.
- 13. Основные положения массообмена. Виды диффузии.
- 14. Дифференциальные уравнения тепло- и массообмена.
- 15. Массоотдача. Закон Фика.
- 16. Критерии подобия и критериальные уравнения массообмена.
- 17. Стационарное испарение неподвижной и летящей капли.
- 18. Основные уравнения тепло- и массообмена при химических превращениях.
- 19. Теплообмен при химических превращениях между газовой смесью и поверхностью раздела фаз.
- 20. Стационарная теплопроводность плоских и цилиндрических стенок.
- 21. Нестационарная теплопроводность цилиндра
- 22. Нестационарная теплопроводность шара
- 23. Основные положения теории подобия.
- 24. Что такое конвективный теплообмен?
- 25. Дайте определение свободного и вынужденного движения среды.
- 26. Физический смысл коэффициента теплоотдачи.
- 27. Физический смысл коэффициента теплопередачи
- 28. Гидравлические условия течения жидкости в трубах.
- 29. Изменение температуры жидкости по сечению и длине трубы.
- 30. Изменения температуры стенки и жидкости вдоль трубы.
- 31. Свободное движение воздуха вдоль нагретой вертикальной стенки.
- 32. Теплоотдача в ограниченном пространстве.
- 33. Особенности теплоотдачи при поперечном омывании единичной трубы и пучка труб.
- 34. Чем отличаются теплообмены шахматного и коридорного пучков труб?
- 35. Основные законы теплового излучения.
- 36. Схемы движения жидкости в теплообменных аппаратах.
- 37. Уравнение температурных напоров.
- 38. Теплообмен при конденсации пара.
- 39. В чем заключается особенность теплообмена при капельной конденсации пара?
- 40. Теплообмен при пузырьковом режиме.
- 41. Особенности теплообмена при пленочном режиме кипения.