Документ подпоненочиные риастериалы для промежуточной аттестации по дисциплине

Информация о владельце:

ФИО: Косенок Сергей Михайлович

Должность: ректор

Дата подписания: 21.10.2025 14:49:47 *Котельные установки и парогенераторы*

Уникальный программный ключ:

e3a68f3eaa1e62674b54f4998099d3d6bfdcf836

Код, направление подготовки	13.03.01 Теплоэнергетика и теплотехника
Направленность (профиль)	Теплоэнергетика и теплотехника
Форма обучения	Очная
Кафедра-разработчик	Радиоэлектроники и электроэнергетики
Выпускающая кафедра	Радиоэлектроники и электроэнергетики

Типовые задания для контрольной работы

ЗАДАЧА 1. Согласно данным таблицы 1 определить состав рабочей массы топлива, его низшую и высшую теплоту сгорания, приведенные значения влажности, зольности, сернистости.

Таблица 1. Исходные данные к задаче 1

Наимен	ование	Вариант									
Величин		1	2	3	4	5	6	7	8	9	10
Вид топлива (бассейн, месторождение, марка, класс)		Кузнецкий Г- промпродукт	Назаровское 2БР	Донецкий ГР	Донецкий ТР	Анадырский 3БР	Кузнецкий ДР	Воркутинское ЖР	Донецкий ЖР	Кузнецкий 2ССР	Азейское 3Б Р
m	$W_t^{\ r}$	13	39	10	6	20	11,5	8	6	8,5	25
Элементарный состав топлива, %	A^d	33	13	32	34	32	18	32	32	18	22
	S_{p+o}^{daf}	1	0,8	4,9	3,5	0,9	0,5	1,6	3,9	0,5	0,9
	$C^{ extit{daf}}$	80	70	78,9	89	72,4	77,7	84	83,6	88	73
	H^{daf}	5,8	4,7	5,6	4	5,5	5,5	5,3	5,2	4,7	5,3
	N^{daf}	3,1	0,9	1,5	1,6	2	2,6	2,4	1,6	2,1	1,5
	$O^{ extit{daf}}$	10,1	23,5	9,2	1,8	19,1	13,6	6,7	5,8	4,7	19,3

ЗАДАЧА 2. По данным таблицы 2 и результатам расчета задачи 1 определить:

- теоретический и действительный объем воздуха;
- теоретический и действительный объем продуктов полного сгорания;
- энтальпию продуктов сгорания на выходе из котла.

Таблица 2. Исходные данные к задаче 2

Наименование, условное обозначение и единицы измерения величин	Вариант											
	1	1 2 3 4 5 6 7 8 9 10										
1. Коэффициент избытка воздуха в топке α_m	1,15	1,2	1,15	1,2	1,25	1,2	1,2	1,15	1,2	1,25		
2. Присосы воздуха в воздухоподогреватель $^{\Delta lpha_{_{on}}}$	0,03	0,2	0,2	0,2	0,2	0,23	0,2	0,03	0,03	0,03		
3. Коэффициент избытка воздуха на выходе из котла $\alpha_{_{\mathrm{Jx}}}$	1,41	1,46	1,49	1,48	1,41	1,5	1,48	1,31	1,28	1,44		
4. Температура уходящих газов ⁹ _{ух} °C	150	121	136	123	132	140	151	129	140	135		
5. Способ шлакоудаления (Т-в твердом состоянии, Ж – в жидком состоянии)	Т	Ж	Ж	Ж	Т	Т	Т	Ж	Т	Ж		

ЗАДАЧА 3. По данным таблицы 3 и результатам расчета задачи 1 и 2 определить:

- располагаемое тепло 1 кг твердого топлива;
- тепловые потери;
- коэффициент полезного действия котла;
- расход топлива.

Таблица 3. Исходные данные к задаче 3

Наименование, условное обозначение и единицы измерения величин	Вариант										
1	1	2	3	4	5	6	7	8	9	10	
1. Тип котла	прямоточный					барабанный					
$2.$ Паропроизводительность D_{ne} , $_{\mathrm{T/Y}}$	990	1650	1000	950	640	500	670	420	220	320	
3. Давление перегретого пара P_{ne} , МПа	25	25	25	25	13,8	13,8	13,8	13,8	10	13,8	
4. Температура перегретого пара $t_{ne}{}^{o}C$	545	540	545	545	550	560	545	560	540	560	
5. Давление в барабане Рб МПа	-	-	-	-	-	15,9	16,0	15,5	11,0	15,0	
6. Давление питательной воды Рп.в. МПа	32	34	31	30	20	18	18	18	12	18	
7. Температура питательной воды $t_{n.s.}{}^{o}C$	270	275	260	265	240	235	245	230	220	230	
8. Расход пара в промежуточный перегреватель $D_{nz}, m/q$	800	1364	820	760	550	-	-	-	-	-	
9. Давление пара на входе в промежуточный перегреватель P'_{nn} , $M\Pi a$	4,0	4,5	4,0	4,0	3,0	-	-	-	-	-	
10. Температура пара на входе в промежуточный перегреватель(начальная) t'_{nn} , C	295	300	320	290	320	-	-	-	-	-	
11. Давление пара на выходе из промежуточного перегревателя $P_{mn}^{"}$, МПа	3,5	4,0	3,5	3,00	2,5	-	-	-	-	-	
12. Температура пара на выходе из промежуточного перегревателя t''_{nn} , C	545	540	545	545	550	-	-	-	-	-	
13. Температура нормального жидкого шлакоудаления $t_{n.x.}$, o C	152 0	1300	1450	1400	1600	1600	1450	1350	1700	1500	
14. Величина непрерывной продувки котла α_{np} %	-	-	-	-	-	2,6	2,4	2,2	2,3	2,5	

Типовые вопросы к экзамену в 5 семестре:

- 1. Источники энергии для котельных установок.
- 2. Материальный баланс процесса горения топлива.
- 3. Материальный баланс нагреваемой среды.
- 4. Общее уравнение теплового баланса котла.
- 5. Теплота, полезно затрачиваемая на производство пара. Расход топлива и КПД котла.
- 6. Потеря теплоты с уходящими газами.
- 7. Потеря теплоты от химической неполноты сгорания.
- 8. Потеря теплоты от механической неполноты сгорания.
- 9. Потеря теплоты от наружного охлаждения.
- 10. Потеря теплоты с физической теплотой шлаков и другие потери.
- 11. Зависимость КПД котла от нагрузки.
- 12. Эксергетический баланс котла.
- 13. Классификация топок.
- 14. Показатели работы топочных устройств.
- 15. Топки, классификация горелок для газообразного топлива.
- 16. Сжигание газообразного топлива.
- 17. Эксплуатация газовых топок. Предотвращение образования и уменьшение вредных выбро-сов.
 - 18. Особенности расчета газовых горелок и топок.
 - 19. Схемы распыления жидкого топлива. Мазутные форсунки.
 - 20. Комбинированные газомазутные горелки.
 - 21. Топки для сжигания жидкого топлива. Эксплуатация топок.
 - 22. Классификация слоевых топок.
 - 23. Характеристика процесса горения твердого топлива в плотном слое.

Типовое задание на курсовой проект

Расчет котельного агрегата

Задание на курсовой проект является индивидуальным и выдается руководителем проекта на отдельном листе, содержащем, кроме перечисленных ниже исходных данных, цель реконструкции котла, чертежи в случае выполнения поверочных расчетов, сроки промежуточного контроля, представления и защиты курсового проекта. Лист с заданием на курсовой проект включается в пояснительную записку.

Задание на курсовой проект содержит следующие исходные данные и материалы:

- 1. Тип котлоагрегата.
- 2. Месторождение, марка и класс топлива.
- 3. Производительность котла D, кг/с.
- 4. Абсолютное давление перегретого пара Р, МПа.
- 5. Температура перегретого пара t_{ne} , С.
- 6. Температура питательной воды $t_{\text{п.в.}}$, С.
- 7. Температура воздуха на выходе из воздухоподогревателя t вп, С.
- 8. Температура холодного воздуха $t_{x.в.}$, С.
- 9. Процент непрерывной продувки р, %.

Содержание проекта:

Курсовой проект состоит из пояснительной записки и графической части.

Расчетно-пояснительная записка содержит описание котельного агрегата, обоснование принятых технических решений, методику и результаты выполненных расчетов и заключение по выполненному проекту.

Пояснительная записка наряду с традиционными разделами, как «Введение», «Содержание», «Использованная литература», включает:

- 1. Описание котельного агрегата до реконструкции, цель реконструкции и пути ее реализации.
 - 2. Краткую характеристику топлива.
 - 3. Обоснование выбора способа сжигания топлива, описание и принцип работы топки.
 - 4. Выбор, принцип работы и эскиз топливосжигающего устройства.
 - 5. Обоснование выбора температур уходящих газов и подогрева воздуха.
- 6. Обоснование выбора хвостовых поверхностей нагрева (водяного экономайзера и воздухоподогревателя).
 - 7. Описание и эскиз схемы циркуляции котла.
 - 8. Расчет объемов и энтальпий воздуха и продуктов сгорания по газоходам котлоагрегата.
 - 9. Тепловой баланс котла, определение его КПД и расчетного расхода топлива.
- 10. Определение конструктивных характеристик (при выполнении поверочного расчета) или разработка конструкции (при выполнении конструктивного расчета) топки.
 - 11. Тепловой расчет топки котла.
 - 12. Тепловой расчет фестона.
 - 13. Тепловой расчет пароперегревателя.
 - 14. Тепловой расчет конвективных испарительных поверхностей (котельного пучка).
 - 15. Тепловой расчет водяного экономайзера.
 - 16. Тепловой расчет воздухоподогревателя.
 - 17. Сводную таблицу теплового расчета.
 - 18. Заключение.

Графическая часть:

Продольный и поперечный разрезы котла, план котла и элементы (узлы, детали или топливосжигающее устройство) котла

Типовые вопросы к экзамену в 6 семестре:

- 1. Топки для сжигания твердого топлива в плотном слое.
- 2. Не механизированные и полумеханические топки.
- 3. Механические топки.
- 4. Сепарация и промывка пара.
- 5. Топки с кипящем слоем.
- 6. Сжигание газообразного топлива.
- 7. Выбор слоевых топок и основы их расчета.
- 8. Особенности сжигания твердого топлива в пылевидном состоянии.
- 9. Основные схемы пылеприготовления.
- 10. Особенности горения угольной пыли.
- 11. Пылеугольные горелки.
- 12. Топки для сжигания угольной пыли.
- 13. Выбор и расчетные характеристики топок для сжигания угольной пыли.
- 14. Теплообмен в топке.
- 15. Расчет теплообмена в топке.
- 16. Теплообмен в конвективных поверхностях нагрева.
- 17. Расчет теплообмена в конвективных поверхностях нагрева.
- 18. Интенсификация радиационного и конвективного теплообмена.
- 19. Условия гидродинамической надежной работы элементов котла.

- 20. Режим гидродинамической надежной работы элементов котла.
- 21. Гидродинамическая характеристика испарительных систем.
- 22. Гидродинамика котлов с естественной циркуляцией.
- 23. Гидродинамика прямоточных котлов.
- 24. Гидродинамика котлов с принудительной циркуляцией.
- 25. Системы газовоздушного тракта котла.
- 26. Аэродинамика дымовой трубы.
- 27. Выбор вентилятора и дымососа.
- 28. Образование накипей и требование к питательной воде.
- 29. Водный режим котла.
- 30. Сепарация и промывка пара.
- 31. Характеристика тепловой схемы котла.
- 32. Температура продуктов сгорания на выходе из топки.
- 33. Тепловосприятие в испарительной системе экономайзере, пароперегревателе.
- 34. Подогрев воздуха, расположение воздухоподогревателя.
- 35. Температура уходящих газов.
- 36. Примеры тепловой схемы котла.
- 37. Тепловые схемы котельной.
- 38. Конструкции и типы котлов.
- 39. Эксплуатация котлов.
- 40. Эксплуатация отопительной котельной
- 41. Выбор вентилятора и дымососа.
- 42. Конструкции испарительных поверхностей нагрева.
- 43. Конструкции и назначение пароперегревателей.
- 44. Регулирование температуры пара.
- 45. Конструкции экономайзеров.
- 46. Конструкции воздухоподогревателей.
- 47. Рекомендации по методике теплового расчета котла.
- 48. Металл и прочность элементов котла.
- 49. Абразивный износ, коррозия загрязнения и очистка поверхностей нагрева котла.
- 50. Содержание вредных выбросов в продуктах сгорания котлов.
- 51. Золоудаление.
- 52. Очистка продуктов сгорания от окислов серы.
- 53. Очистка продуктов сгорания от окислов азота.
- 54. Температурные напоры на каждую конвективную поверхность нагрева
- 55. Точка росы и ее влияние на тепловой расчет котла
- 56. Температура газов на выходе из топки
- 57. Влияние влажности на расчет котла
- 58. Невязка теплового баланса по ступеням расчета
- 59. Общая невязка теплового баланса
- 60. Количество продувочной воды при проведении теплового расчета котла
- 61. Прямоточные котлы как перспектива развития промышленного энергетического машиностроения
 - 62. Парогазовые установки
 - 63. Мини ТЭЦ
 - 64. Блочные отопительные котельные
 - 65. Газовые котлы при отоплении
 - 66. Современные установки по золоулавливанию
 - 67. Блочные энергетические котельные.