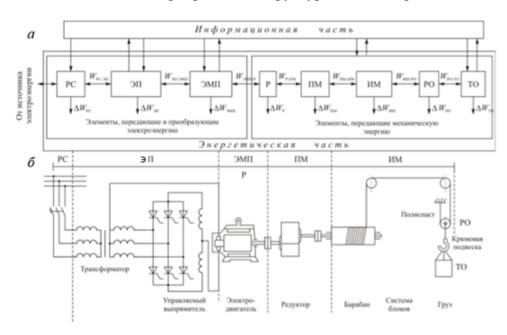
Документ подписан простой электронной подписью

Информация о владельце:

e3a68f

ФИО: Косенок Сергей Михайлович

Должность: ректор Дата подписания: 21.10.2025 14:49:47


Оценочные материалы по дисциплине ОБЩАЯ ЭНЕРГЕТИКА

Уникальный программный ключ:

льный программный ключ.		
f3e	а. 16267674h54f4998099d3d6bfdcf836 Код, направление	13.03.01 Теплоэнергетика и теплотехника
	подготовки	
	Направленность (профиль)	Теплоэнергетика и теплотехника
	Форма обучения	Очная
	Кафедра-разработчик	Радиоэлектроники и электроэнергетики
	Выпускающая кафедра	Радиоэлектроники и электроэнергетики

Типовые задания для контрольной работы:

Задача 1. Превращения энергии на примере электропривода подъемного механизма. Схема силового канала электропривода: а-структурная; б-электромеханическая

Задача 2. Определить состав рабочей массы челябинского угля марки Б3, если состав его горючей массы: $C^r=71,1\%,\ H^r=5,3\%,\ S_\pi^{\ r}=1,9\%,\ N^\Gamma=1,7\%,\ O^r=20\%.$ Зольность сухой массы $A^c=$, влажность рабочая W^p .

Заданная масса топлива	Коэффициент пересчета на массу			
	рабочую	сухую	горючую	
Рабочая	1	100/(100-W ^p)	$100/[100-(W^p+A^p)]$	
Сухая	$(100-W^p)/100$	1	100/(100-W ^p)	
горючая	$[100-(W^p+A^p)]/100$	(100-A ^c)/100	1	

Задача 3. Конденсационная станция израсходовала B=650 кг/год каменного угля с теплотой сгорания $Q_{\rm H}{}^{\rm p}=23,5$ кДж/кг и выработала электроэнергии ${\rm Э^{rog}}=500\cdot 10^{10}$ кВТ/ч. Определить расход условного топлива на выработку 1 МДж электроэнергии.

Задача 4. Какое количество теплоты необходимо затратить, чтобы нагреть $V_1=2,1\,\mathrm{m}^3$ воздуха при постоянном избыточном давлении p=2 ат от $t_1=120\,\mathrm{^{\circ}C}$ до $t_2=460\,\mathrm{^{\circ}C}$. Какую работу при этом совершит воздух. Атмосферное давление принять равным 750 мм рт.ст., учесть зависимость теплоемкости от температуры. Процесс нагревания иллюстрировать в p-v и T-S диаграммах.

Задача 5. Перегретый пар при давлении p_1 =20 бар и температуре t_1 =500 °C расширяется по адиабате до p_2 =0,1 бар. Определить по h-s диаграмме конечное состояние пара, изменение внутренней энергии, работу расширения L_{1-2} и техническую работу L'_{1-2} . Изобразить процесс в диаграммах h, S; T, s и p, v.

Задача 6. Стенка из шлакобетона длиной 20 м, высотой 35 м и толщиной 0,5 м имеет теплопроводность λ =0,93 Вт/м· 0 С. Температура на внутренней поверхности стенки t_{1} =15 0 С, а на внешней — 10 0 С. Определить плотность теплового потока и тепловой поток, а также количество теплоты, проникающей через стенку в сутки. Задачу иллюстрировать графиком изменения температуры в слое материала.

Задача 7. На электростанции установлены три турбогенератора мощностью $P=50\cdot10^3$ кВт каждый. Определить количество выработанной энергии за год и коэффициент использования установленной мощности, если площадь под кривой годового графика нагрузки станции $F=9,2\cdot10^{-4}$ м 2 и масштаб графика $m=9\cdot10^{11}$ кВт·ч/м 2 .

Задача 8. Конденсационная станция израсходовала $B=720\cdot10^6$ кг/год каменного угля с низшей теплотой сгорания $Q_{\rm H}{}^{\rm p}\!\!=\!20500$ кДж/кг и выработала электроэнергии $\Theta^{\rm выр}=590\cdot10^{10}$ кДж/год, израсходовав при этом на собственные нужды 5% от выработанной электроэнергии. Определить КПД брутто и КПД нетто станции.

Вопросы к зачету с оценкой:

- 1. Общие понятия.
- 2. Классификация источников энергии.
- 3. Технические характеристики источников энергии, солнечной энергии, энергии ветра, гидроэнергетический потенциал.
 - 4. Техническая характеристика различных видов топлива.
 - 5. Расчет теплоты сгорания топлива.
 - 6. Ядерная энергия деления.
 - 7. Законы термодинамики.
 - 8. Основные термодинамические понятия.
- 9. Основные термодинамические процессы. Изохорический процесс, изотермический процесс, изобарический процесс, адиабатный процесс.
 - 10. Теплопроводность.
 - 11. Теплообмен и теплопередача.
 - 12. Теплопроводность при стационарном режиме и различных граничных условиях.
 - 13. Теплопроводность излучением.
 - 14. Конвективный теплообмен.
 - 15. Требования к системам централизованного отопления.
 - 16. Горячее водоснабжение.
 - 17. Паровые газовые турбоустановки ТЭС.
 - 18. Сверхпроводимость и перспективы ее использования.
 - 19. Атомные станции теплоснабжения (АТС).
 - 20. Энергия термоядерного синтеза.

- 21. Технология производства электрической энергии и теплоты на тепловых электростанциях КЭС, ТЭЦ.
 - 22. Основные элементы КЭС, ГРЭС, ТЭЦ.
 - 23. Паровые (энергетические) котлы.
 - 24. Теплообменный аппарат конденсатор назначение на КЭС, ГРЭС.
 - 25. Сведения о развитии атомной энергетики о российских АЭС, о реакторах.
 - 26. Схема выдачи мощности электростанций.
 - 27. Виды гидроэлектростанций.
 - 28. Технологический процесс производства электроэнергии на ГЭС.
 - 29. Ветровые электростанции.
 - 30. Солнечная энергетика, солнечные электростанции (СЭ).
- 31. Принципиальная технологическая схема дизельной электростанции и геотермальной электростанции. Общие сведения об электрических сетях. Номинальные напряжения электрических сетей.
 - 32. Конструкция воздушной и кабельной линии.
 - 33. Системы и виды освещения.
 - 34. Эффективность использования энергоресурсов.
 - 35. Графики электрических нагрузок. Короткие замыкания в электроустановках.
- 36. Технический учет электроэнергии и диспетчеризация управления энергоснабжением промышленного предприятий.
- 37. Назначения, область применения, устройства и принцип действия асинхронных машин.
- 38. Силовые трансформаторы и автотрансформаторы: общие сведения, системы охлаждения, нагрузочная способность.